

 Routex

 v1.2.2

 [image: Logo]

 Table of contents

 	The project

 	Overview

 	Included extensions

 	Release Notes

 	Changelog

 	Guides

 	Getting started

 	Localize Phoenix

 	Localization vs Translation

 	Extra

 	Routex and Phoenix Router

 	History of Routex

 	Routing solutions compared

 	Development

 	Extensions

 	Contributing

 	Troubleshooting

 	
 Modules

 	Routex.Test.Fixtures

 	Routex.Test.Fixtures.Assigns

 	Routex.Test.Support.Gettext

 	Routex

 	Routex

 	Routex.Attrs

 	Routex.Backend

 	Routex.Branching

 	Routex.Dev

 	Routex.Extension

 	Routex.HelperFallbacks

 	Routex.Matchable

 	Routex.Processing

 	Routex.Route

 	Routex.Router

 	Routex.Types

 	Routex.Utils

 	Extensions

 	Routex.Extension.AlternativeGetters

 	Routex.Extension.Alternatives

 	Routex.Extension.Assigns

 	Routex.Extension.AttrGetters

 	Routex.Extension.Cldr

 	Routex.Extension.Cloak

 	Routex.Extension.Interpolation

 	Routex.Extension.LiveViewHooks

 	Routex.Extension.Localize.Phoenix

 	Routex.Extension.Localize.Phoenix.Routes

 	Routex.Extension.Localize.Phoenix.Runtime

 	Routex.Extension.Plugs

 	Routex.Extension.RouteHelpers

 	Routex.Extension.RuntimeDispatcher

 	Routex.Extension.Translations

 	Routex.Extension.VerifiedRoutes

 	Submodules

 	Routex.Extension.Interpolation.NonUniqError

 	Routex.Extension.Localize.Parser

 	Routex.Extension.Localize.Phoenix.Detect

 	Routex.Extension.Localize.Phoenix.Extractor

 	Routex.Extension.Localize.Phoenix.Parser

 	Routex.Extension.Localize.Registry

 	Routex.Extension.Localize.Types

 	Routex.Extension.Alternatives.Branch.Flat

 	Routex.Extension.Alternatives.Branch.Nested

 	Routex.Extension.Alternatives.Config

 	Routex.Extension.Alternatives.Exceptions.AttrsMismatchError

 	Routex.Extension.Alternatives.Exceptions.MissingRootSlugError

[image: Logo of Routex]
[image: Coveralls]
[image: Build Status]
[image: Last Updated]
[image: Hex.pm]
[image: Hex.pm]
Routex: Phoenix route localization and beyond....
Routex is a comprehensive, batteries included framework built on top of Phoenix,
designed to streamline and empower your routing workflows. By simplifying route
manipulation at compile time and enabling the use of custom route attributes
during runtime, Routex provides the granular control needed to tackle the most
complex routing challenges.
Its modern, extensible architecture allows for effortless creation of custom
solutions, extending its functionality far beyond standard routing.

 Localize Phoenix

For developers seeking robust Phoenix localization solutions, Routex excels. It
offers a suite of extensions enabling internationalization (i18n) and
localization (l10n), including but not limited to seamless support for
translated (multilingual) URLs, locale preference detection at run time and
support for multiple backends.
The included extension Localize Phoenix simplifies Phoenix localization by
detecting already used localization packages (Cldr, Gettext or Fluent) and
automatically generate routes based on their existing configuration for a
seamless experience or using your manual configuration for powerful
customization.
The extension includes an IANA based locale registry
for robust locale validation and conversion to display names.
Forget any notion of difficult setup – localizing your Phoenix application with
Routex is a breeze. Just copy the example configuration from our Localize
Phoenix using Routex guide for an effortless
start.
This documentation reflects the main branch. For the latest
stable release, refer to HexDocs).

 Benefits and Features:

	Simplify development: Routex combines compile-time code generation with
dynamic runtime behavior by seamlessly integrating LiveView lifecycle hooks
and pipeline Plugs. This enables extensions to provide powerful runtime
features such as automatically locale detection and synchronization between
the server, client, and LiveView processes- without requiring modifications
throughout your codebase.

	Drop-in solution: Extensions are highly configurable, allowing you to use
Routex features as drop-in solution. For example: Routex can be configured to
remain compatible with Phoenix' template generators. As such, it doesn't
disrupt standard Phoenix development practices lowering the learning curve. It
can also be configured to mimic Cldr-Routes with its tight integration wirth
Cldr and use of custom sigils.

	Optimized Performance: Positioned between route configuration and
compilation, Routex core enhances Phoenix routes without incurring additional
runtime costs. Extensions too are optimized for runtime performance, making
use of Elixirs superb pattern matching.

	No dependencies, no state: Routex is unique in not depending on other
libraries and works out-of-the-box without proces state. An extension to
control third-party libraries that do rely on state such as Gettext is
included.

	Detailed documentation: Comprehensive, well-organized documentation
provides clear guidance on installation, configuration, and best practices,
making Routex approachable for developers at all levels.

 Give it a try!

Online demo - have a look or get the
code.

 Installation and usage

Usage Guide - requirements and installation.
instructions.
Documentation - from step-by-step guides till in-depth explanations.

 Knowledge Base

To better understand how Routex integrates with Phoenix Router and where it fits
into the broader ecosystem, take a look at our in-depth guides:
How Routex and Phoenix Router Work Together -
Discover the mechanics behind the integration and the benefits of a unified routing system.
Routex compared to Phoenix Router and Cldr Routes -
Understand the differences, strengths, and tradeoffs when deciding which
routing solution best fits your needs.

 Extensions

Routex comes equipped with a extensions that cater to common and advanced use
cases in Phoenix applications. Each extension is designed to operate
independently yet harmoniously with other extensions through the shared
Routex.Attrs system. This flexibility allows you to tailor your routing system
to your specific needs without resorting to extensive modifications or the
burden of maintaining a fork.

 Benefits:

	Modularity: Each feature is encapsulated in its own extension, making
it easier to manage and maintain.
	Flexibility: Extensions can be enabled or disabled as needed, allowing
for a customizable and adaptable routing system.
	Interoperability: By using Routex.Attrs to share attributes, extensions
can work together seamlessly without being tightly coupled, promoting a
decoupled and scalable architecture.
	Customizability: If you have a unique requirement, you can adapt an
existing extension -or create your own- without the need to fork or reach
upstream consensus on the need and purpose.

 Index

Specialized suites
	Localize Phoenix: Simple localization of Phoenix using auto-detection of
localization libs. Combines Localize Phoenix Routes and
Localize Phoenix Runtime.

Adapters for third-parties
	Cldr Adapter: tight integration with :ex_cldr (mimics cldr-routes and cldr-plugs).

Phoenix shims
	Verified Routes: (Locale) Branch aware variant of Phoenix.VerifiedRoutes.
	Route Helpers: (Locale) Branch aware Phoenix Helpers.

Feature extensions
	Alternatives: Create (nested) alternative routes.
	Alternative Getters: List all alternative routes for the current route.
	Assigns: Use route attributes as assigns in templates (e.g. @custom_attribute).
	Attribute Getters: Fetch all custom attributes of any route.
	Interpolation: Use route attributes in route definitions at any place (e.g. live /page/products/#{language}/:id.
	LiveView Hooks: Integrate LiveView Lifecycle hooks provided by other extensions.
	Localize Phoenix Routes: Localize Phoenix routes with the help of an IANA based locale registry).
	Localize Phoenix Runtime: Highly configurable locale detection using multiple sources (StaticView and LiveView).
	Plugs: Integrate plugs provided by other extensions.
	Runtime Dispatcher: Dispatch to arbitrary functions at runtime using route attributes as arguments.
	Translations: Translate route segments / full localized URLs.

Showcases
	Cloak: Demonstrates Routex' support for extreme route transformations.

 Development

Contributions to Routex are highly appreciated! Whether it's a simple typo fix,
a new extension or any other improvement.
Want to validate your idea? Use our discussion
board
	clone Routex: https://github.com/BartOtten/routex
The main branch is the active development branch.

	clone Routex Example app: https://github.com/BartOtten/routex_example
Use either the main branch or watch for branches indicating a newer version

	copy or symlink routex into routex_example
This causes the example to use the locale routex

	enable AST insight in the example app
Inspecting the helpers generated by Routex' extensions helps a lot
In routex_example/config/dev.ex
config :routex, helper_mod_dir: "/tmp"

Routex Extensions

Routex includes a variety of extensions to cover the most common use cases in
Phoenix applications. Each extension provides a single feature and has no hard
dependencies on other extensions. Instead, extensions make use of Routex.Attrs
to share attributes; allowing extensions to work together without being coupled.
Benefits:
	Modularity: Each feature is encapsulated in its own extension, making
it easier to manage and maintain.
	Flexibility: Extensions can be enabled or disabled as needed, allowing
for a customizable and adaptable routing system.
	Interoperability: By using Routex.Attrs to share attributes, extensions
can work together seamlessly without being tightly coupled, promoting a
decoupled and scalable architecture.
	Customizability: If you have a rare requirement, you can adapt an existing
extension or provide your own, without need for a fork or upstream support.

 Index

	Localize Phoenix: A streamlined solution for localizing Phoenix routes with minimal setup.
	Localize Phoenix Routes: Generate localized routes at compile time.
	Localize Phoenix Runtime: Plug and play locale detection (StaticView and LiveView).
	Alternatives: Create (nested) alternative routes.
	Alternative Getters: Get alternatives for the current route.
	Verified Routes: Branch aware variant of Phoenix.VerifiedRoutes.
	Assigns: Use route attributes as assigns in templates.
	Interpolation: Use attributes in route definitions.
	Translations: Translate route segments / full localized URLs.
	Attribute Getters: Retrieve Routex.Attrs for a route.
	Cldr Adapter: Use an existing :ex_cldrconfiguration.
	Plugs: Integrate plugs provided by extensions.
	LiveView Hooks: Attach LiveView Lifecycle hooks provided by extensions.
	Route Helpers: Create branch aware Phoenix Helpers.
	Cloak: Showcase to demonsrate extreme route transformations.
	Runtime Dispatcher: Dispatch to arbitrary functions using route attributes as argument.

 Localize Phoenix

Feature: A streamlined solution for localizing Phoenix routes with minimal setup.
Localize Phoenix Documentation

 Localize Phoenix Runtime

Feature: Plug and play locale detection in StaticViews and LiveViews.
Benefits: Being highly customizable this locale detection adapts to your project instead of the other way around.
Example: Set the locale attribute based on the HTTP accept-language header.
locale_sources: [:query, :session, :accept_language, :route],
locale_params: ["locale"]
language_sources: [:query, :route],
language_params: ["custom_lang"]
Localize Phoenix Runtime Documentation

 Localize Phoenix Routes

Feature: Generate localize routes using automatic configuration base on Cldr, Gettext or Fluent (with options to override).
Benefits: Improves SEO, content relevance and user convenience
Example: Expand routes to multiple (nested) locale routes with custom attributes.
Router Generated Attributes
 ⇒ /products/:id/edit locale: "en", contact: "rootexample.com"
 /products/:id/edit ⇒ /europe/nl/products/:id/edit locale: "nl", contact: "verkoop@example.nl"
 ⇒ /europe/be/products/:id/edit locale: "nl", contact: "handel@example.be"
 ⇒ /gb/products/:id/edit locale: "en", contact: "sales@example.com"
Localize Phoenix Routes Documentation

 Runtime Dispatcher

Feature: Dispatch to arbitrary functions using route attributes as argument.
Benefits: This is particularly useful for integrating with internationalization libraries like:
	Gettext - Set language for translations
	Fluent - Set language for translations
	Cldr - Set locale for the Cldr suite

Example: Call Gettext.put_locale/1 using the locale attribute set by Localize.Routes or Localize.Runtime.
 dispatch_targets: [
 # Set Gettext locale from :language attribute
 {Gettext, :put_locale, [[:attrs, :locale]]},
]
Runtime Dispatcher Documentation

 Alternatives

Feature: Create alternative routes based on branches configured in a
Routex backend module. Branches can be nested, and each branch can provide its
own attributes to share with other extensions.
Benefits: Enables the definition of alternative routing paths and
their attributes in a single place.
Example: You can configure different branches for different locales or
versions of your application, providing users with the appropriate routes
based on their context.
Alternatives Documentation

 Alternative Getters

Feature: Creates a helper function alternatives/1 to get a list of
alternative slugs and their route attributes. Includes the current route with
match?: true attribute.
Benefits: Simplifies the retrieval and use of alternative routes for the
current page.
Example: Easily display navigation buttons for alternative routes with
highlighting of the current active route.
<.link
 :for={alternative <- alternatives(@url)}
 navigate={alternative.slug}
 >
 <.button class={alternative.match? && "active" || "inactive"}>
 <%= alternative.attrs.display_name %>
 </.button>
 </.link>
Alternative Getters Documentation

 Verified Routes

Feature: Creates a sigil (default: ~l) that renders a link based on the
current branch of a user and verifies routes even when transformed by Routex
extensions. Can be set to ~p to act as a drop-in replacement for the official
Phoenix sigils.
Also provides branch-aware variants of url/{2,3,4} and path/{2,3}.
Benefits: Ensures route integrity and security while supporting dynamic
route transformations.
Example: Use the ~p sigil to generate URLs that adapt to the user's
current context or locale, ensuring they are always valid.
given Routex behavior is configured as drop-in replacement using ~p
giving original ~p is reassigned to ~o
given another extension has generated branches / alternative routes

~o"/products/#{product}" ⇒ Phoenix.sigil_p("/products/#{products}")
~p"/products/#{product}" ⇒
 case current_branch do
 nil ⇒ Phoenix.sigil_p("/products/#{product}")
 "fr" ⇒ Phoenix.sigil_p("/produits/#{product}")
 "es" ⇒ Phoenix.sigil_p("/productos/#{product}")
 end
Verified Routes Documentation

 Assigns

Feature: Adds attributes set by other extensions to Phoenix assigns,
making them available in components and controllers.
Benefits: Provides easy access to route-specific attributes within the
application's components and controllers.
Example: Access route attributes like @namespace.area or
@namespace.contact directly in your templates.
 @namespace.area => :eu_nl
 @namespace.contact => "contact@example.com"
Assigns Documentation

 Interpolation

Feature: Allows -any- attribute assigned to a route to be used at -any-
place for route interpolation, especially effective with extensions like
Alternatives.
Benefits: Provides dynamic and customizable URL patterns based on various
attributes.
Example: Generate URLs like /europe/products/nl/:id where territory and
language are dynamically interpolated.
 /#{territory/products/#{language}/:id => /europe/products/nl/:id
Interpolation Documentation

 Translations

Feature: Extracts segments of a route's path to a routes.po file for
translation. At compile-time, it combines the translated segments to translate
routes, allowing users to enter URLs using localized terms.
Benefits: Enhances user engagement and content relevance by supporting
localized URLs.
Example: Users can visit your website using URLs in their own language,
such as /productos instead of /products for Spanish-speaking users.
Translations Documentation

 Attribute Getters

Feature: Creates a helper function attrs/1 to get all Routex.Attrs of a
route.
Benefits: Allows conditional access to route attributes without affecting
performance.
Example: Retrieve all attributes for the current page with attrs(@url).
Attribute Getters Documentation

 Cldr Adapter

Feature: Provides integration for projects using :ex_cldr.
Benefits: Seamlessly integrates Routex with :ex_cldr.
Example: Utilize CLDR's localization features within your routing logic.
Cldr Adapter Documentation

 Plugs

Feature: Detects and registers supported plug callbacks from other
extensions, encapsulating them in a single plug chain.
Benefits: Integrates extension plugs seamlessly, ensuring they are invoked
in order during the plug pipeline.
Example: Provides a unified plug that incorporates functionality from
multiple extensions, simplifying plug management.

 LiveView Hooks

Feature: Attaches LiveView hooks provided by Routex extensions, injecting
them into LiveView's lifecycle stages.
Benefits: Enables extensions to provide hooks for LiveView components,
enhancing their functionality and integration.
Example: Automatically invoke extension hooks during LiveView lifecycle
events like handle_params, handle_event, and handle_info.

 Route Helpers

Feature: Creates branch aware Phoenix Helpers. Can replace the original
Phoenix Route Helpers as drop-ins.
Benefits: Simplifies route handling and branching within Phoenix
applications.
Example: Use these helpers to generate URLs that adapt to the user's current
context or locale.
Route Helpers Documentation

 Cloak (showcase)

Feature: Transforms routes to be unrecognizable, demonstrating the
flexibility of Routex.
Benefits: Offers a way to obscure URL patterns for added security or
experimentation.
Example: Converts /products/:id/edit to /:id/02.
 Original Rewritten Result (product_id: 88, 89, 90)
 /products => /01 => /01
 /products/:id/edit => /:id/02 => /88/02, /89/02, /90/02 etc...
 /products/:id/show/edit => /:id/03 => /88/03, /89/03, /90/03 etc...
Cloak Documentation

Announcing Routex 1.2.0 – Effortless Phoenix Localization

I’m thrilled to announce Routex 1.2.0, a major update that brings
zero‑config internationalization (i18n) and and localization (l10n) to your
Phoenix apps. It plugs straight into Cldr, Gettext, or Fluent and eliminates the
boilerplate of manual locale plugs and translation hooks.
 Summary
	Simplified localization
	Comprehensive runtime integration
	Enhanced developer tools
	Community-driven improvements

 1. Zero-Config Localization with Multilingual Routing

Building multilingual Phoenix sites used to mean scattering locale detection,
LiveView hooks, and dynamic-route logic throughout your code. Routex 1.2.0
replaces all that with a single, centralized configuration. Your router stays
clean, localization is applied at compile time, and runtime dispatching
seamlessly handles any additional needs—no extra wiring required.
The new Localization system is a game-changer automatically detecting your
existing Phoenix localization setup and making everything work out of the box.
Let's see this magic in action with a typical Phoenix application:
lib/my_app_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.Attrs,
 Routex.Extension.LiveViewHooks,
 Routex.Extension.Plugs,
 Routex.Extension.Localize.Phoenix.Routes,
 Routex.Extension.Localize.Phoenix.Runtime,
 Routex.Extension.RuntimeDispatcher
]
Using the sane defaults of the extensions Routex will transforms your routes
based on your Gettext locales (or Cldr, or Fluent). For example, if your Gettext has "en" (default),
"fr", and "nl" configured, Routex automatically generates:
Example: Generated Routes
Original route: /products
"/products" # Default locale (en)
"/fr/products" # French
"/nl/products" # Dutch
The magic continues at runtime. Routex automatically:
	Detects the user's preferred language from a variary of sources
	Sets up Gettext with the correct locale
	Maintains the locale across LiveView navigation
	Provides helper functions for switching locales

Want to customize? No problem! The zero-config setup can be enhanced with
explicit configuration. Here are a few examples:
lib/my_app_web/routex_backend.ex

Override auto-detected locale settings for route generation
locales: ["en-US", "fr-FR", "nl-BE": %{language_display_name: "DUTCH"}}],
default_locale: "en-US",

Customize URL generation: results in /english, /french, /dutch
locale_prefix_sources: [:language_display_name],

Customize URL generation: results in "/", "/world", "/france", "/netherlands", "/belgium"
locale_prefix_sources: :region_display_name

Customize region detection order: fixed to route attribute, no overrides
region_sources: [:route],

Customize language detection order
language_sources: [:query, :session, :accept_language, :route]
The Localize extensions come with a IANA Language Subtags based locale registry
covering common needs. The language/1 and region/1 functions can be used to
translate locale, region and language identifiers to display names. language?
and region? validate input.
single subtag
iex> Routex.Extension.Localize.Registry.region("BE")
%{descriptions: ["Belgium"], type: :region}

double subtag
iex> Routex.Extension.Localize.Registry.language("nl-BE")
%{descriptions: ["Dutch", "Flemish"], type: :language}

 2. Enhanced integration with other libraries

For scenarios requiring integration with other third-party libs, Routex 1.2.0
introduces runtime dispatch targets through the
Routex.Extension.RuntimeDispatcher extension. The dispatch targets are
automatically called using a Plug and Liveviews events using a LiveView
Lifecycle Hook.
dispatch_targets: [
 # Set Gettext locale using detected :language attribute (this is a default)
 {Gettext, :put_locale, [[:attrs, :runtime, :language]]},

 # Custom dispatch using routes :region attribute
 {MyModule, :set_region, [[:attrs, :route, :region]]},
]

 3. Automated LiveView lifecycle hooks and plugs

Two new extensions add support for the detection and auto-enabling of Plugs and
LiveView Livecycle Hooks provided by other extensions. This seamless integration
improves the overall developer experience (DX) by reducing the friction of
additional plug and hook configuration.
lib/my_app_web/routex_backend.ex
extensions: [
 Routex.Extension.LiveViewHooks, # detects and enables LiveView Lifecycle callbacks
 Routex.Extension.Plugs, # detects and enables Plug calls
]

 4. A Better Development Experience

We've completely overhauled the development experience.
	Crystal-clear error messages
	Built-in AST inspection for debugging

Clearer Error Messages
Configuration issues now trigger clearer error messages. Instead of encountering
a full stacktrace, you receive concise guidance to help pinpoint and resolve
common mistakes. Such as:
Raised during pre-processing when an extension is missing:
Extension 'Routex.Extension.404' not found.
Or when the attrs/1 helper function is missing:
Routex Error: Missing required implementation of `attrs/1`.

 None of the enabled extensions provide an implementation for `attrs/1`.
 Please ensure that you have added and configured an extension that
 implements this function. For more details on how to set up the
 AttrGetters extension, see the documentation:

 https://hexdocs.pm/routex/Routex.Extension.AttrGetters.html
AST Inspection Option
A new configuration setting allows developers to output the generated code for
inspection. This additional transparency can be valuable for diagnosing issues
with the extension-generated helper functions.
In config/dev.ex
config :routex, helper_mod_dir: "/tmp"
During compilation, the generated code is saved to your specified directory for review:
Wrote AST of Elixir.ExampleWeb.Router.RoutexHelpers to /tmp/ExampleWeb.Router.RoutexHelpers.ex

Ready to be inspected.
cat /tmp/ExampleWeb.Router.RoutexHelpers.ex
defmodule ExampleWeb.Router.RoutexHelpers do
 @moduledoc "This code is generated by Routex and is for inspection purpose only\n"

 require Logger
 use Routex.HelperFallbacks

 @doc "Returns Routex attributes of given URL\n"
 def attrs(url) when is_binary(url) do
 url |> Matchable.new() |> attrs()
 end

 # ... all other helper functions ...

 5. Improved Reliability and Performance

 Faster compilation, faster runtime

Several improvements have been made to the Routex pre-processing engine for
better compilation. The revamped processing model brings compile‑time
optimizations, and increases the amount of supported routes to multiple
hundreds.
Build-in extensions have been recrafted for reduced generated code and enhanced
performance thanks to Elixir’s robust pattern matching and function call
optimizations -ensuring that your app remain both fast and reliable.
A brief summary of the processed routes is now provided during compilation.
Routex.Processing >> Routes >> Original: 16 | Generated: 100 | Total: 116

 Improved Reliability

Increased Test Coverage
With over 90% test coverage, the core functionality and error-handling paths
have been thoroughly verified. This improvement helps reduce regressions and
ensures better stability.

 Community Contributions

Welcome to new contributors who have improved the project.
Krister Viirsaar reported issues with setup en especially with the Localize
Phoenix tutorial. The issue is titled "Localization guide is missing step to
content translation (using Gettext)". Let's say this lengthy release note is
Routex' reply....thanks Krister!
Niels Ganser and Max Gorin for contributing fixes to the documentation. Although
small in size, such contributions make impact. Nobody likes broken links or
incorrect instructions.
A special thanks to Kenneth Kostrešević -you may recognize his name from the Ash
weekly- as he spotted and fixed an embarrasing regression before it was released. His
extra addition to the test suite ensures the issue won't sneak into the codebase
again again.
Contributions are highly welcome!

 Looking Forward

As we continue to evolve Routex, our focus remains steadfast on making Phoenix
route management as effortless as possible. This release marks a significant
step toward that goal, with features that not only make development easier but
also more enjoyable.
The next grand release will be focussing on even easier setup. Kenneth Kostrešević
has already begon the work to craft a one-command setup using an Igniter installer

 Conclusion

Routex 1.2.0 sets a new benchmark for Phoenix localization by turning a once
cumbersome process into a streamlined, configuration‑driven experience. Upgrade
today to harness automated locale detection, dynamic routing enhancements, and
an unparalleled developer experience that empowers you to build world‑class
multilingual Phoenix applications—all while reducing boilerplate and enhancing
maintainability.
Ready to upgrade? Check out our
documentation for a smooth
transition to the latest version.
Happy coding, and enjoy the future of Phoenix localization with Routex 1.2.0!

 TLDR not your cup of tea? The Localize Suite in more Detail

As Routex demands "Simple by default, powerful when needed", it broads not one,
but two extensions for localization.

 1. Localize.Phoenix.Routes

Localize Phoenix routes using simple configuration.
 At compile time, this extension generates localized routes based on locale
 tags. These locale tags are automatically derived from your Cldr, Gettext or
 Fluent setup and can be overriden using the extensions options.
 #### Notable features
	Buildin locale registry: Locale subtags can be validated and converted to human-friendly display
names using the buildin locale registry based on the authoritive
IANA Language Subtag Registry.

	Automated locale expansion: At compile time this extension will expand a routes :locale attribute into multiple attributes such as
:language (e.g., "en") and :language_display_name

	Locale branch attributes (overrides)
Assign or override attributes for a specific locale routes branch.
 Example:
 locales: [
 # Standard English
 "en",
 # Standard French
 "fr"
 # Language: "English", Region: "Global" displayed as "Worldwide"
 "en-001": %{region_display_name: "Worldwide"},
 # Language: "English", Region: "Great Brittain", Compile time route attributes: %{currency: "GBP"}
 "en-GB": %{currency: "GBP"},
]
Attribute Merging Precedence (Compile Time, low to high):
	Derived from locale string
	Explicit Locale Override (from attrs in tuple)
	Original Branch Attribute (already existing on the branch)

Point 3 ensures this extension plays well with
pre-configured alternative branches.

	Custom route prefixes
Locale attributes to prefix routes with, supporting the automated expanded locale attributes.

 Examples:
 # in configuration
 locales: ["en-001", "fr", "nl-NL", "nl-BE"]
 default_locale: "en"

 # single source
 locale_prefix_sources: :locale => ["/", "/en-001", "/fr", "/nl/nl", "/nl-be"],
 locale_prefix_sources: :language => ["/", "/fr", "/nl"],
 locale_prefix_sources: :region => ["/", "/001", "/nl", "/be"]
 locale_prefix_sources: :language_display_name => ["/", "/english", "/french", "/dutch"]
 locale_prefix_sources: :region_display_name => ["/", "/world", "/france", "/netherlands", "/belgium"]

 # with fallback
 locale_prefix_sources: [:language, :region] => ["/", "/fr", "/nl"]
 locale_prefix_sources: [:region, :language] => ["/", "/001", "/fr", "/nl", "/be"]

 2. Localize.Phoenix.Runtime: Advanced Locale Detection

Routex 1.2.0 automatically detects the user’s locale from multiple independent
sources:
	Pre-compiled route attributes
	The Accept-Language header sent by the client (fr-CH, fr;q=0.9, en;q=0.8, de;q=0.7)
	Query parameters (?lang=fr)
	Hostname (fr.example.com)
	Path parameters (/fr/products)
	Assigns (assign(socket, [locale: "fr"]))
	Body parameters
	Stored cookie
	Session data

The extension comes with sane default, but each parameter can be customized to
make locale detection fit your project instead of the other way around. A uniq
multi‑attribute, multi-source approach empowers your application to adapt the
runtime language and region using different strategies. This aligns with our
Localization vs Translation advice
Example
In your Routex backend module; all optional
locale_sources: [:query, :session, :accept_language], # Order matters
locale_params: ["locale"], # Look for ?locale=... etc

language_sources: [:path, :host],
language_params: ["lang"], # Look for /:lang/... etc

region_sources: [:route] # Only use region from precompiled route attributes
region_params defaults to ["region"]
By automating locale detection, Routex helps you eliminate error‑prone manual
setup and significantly reduces development time.
Extension Development
Provide LiveView Lifecycle Hooks
Routex.Extension.LiveViewHooks detects LiveView Lifecycle callbacks and
inlines their bodies. Each callback receives the standard LiveView parameters
after attrs -containing the current routes' Routex attributes- has been
embedded in the socket.
Available Callbacks
	handle_params
	handle_event
	handle_info
	handle_async
	after_render

Provide a Plug
Routex.Extension.Plugs detects call/2 callbacks and inlines their bodies.
The callback receives the standard Plug.call parameters after attrs
-containing the current routes' Routex attributes- has been embedded in the
conn.

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v1.2.2 (2025-05-06)

 Bug Fixes:

	processing: order not fully restored

 v1.2.1 (2025-05-05)

 Bug Fixes:

	core: reduction error when all routes are wrapped

	localize: custom route prefix ignored

 v1.2.0 (2025-05-01)

 New Extensions:

	Routex.Extension.Localize.Phoenix.Routes - compile time localization

	Routex.Extension.Localize.Phoenix.Runtime - runtime localization

	Routex.Extension.RuntimeDispatcher - set state / put locale using route attributes

	Routex.Extension.LiveViewHooks - inlines custom LiveView lifecycle hooks provided by other extensions

	Routex.Extension.Plugs - detects and inlines custom Plugs provided by other extensions

 Features

	auto detection and usage of existing Cldr, Gettext or Fluent setup.

	support locales and default_locale for auto generated localized routes

	support attribute overrides for locale attributes

	Routex.Extension.Localize.Registry - simple locale registry based on IANA

	clear error messages when extensions are missing

	show summary of processed routes

	new config option to inspect generated helpers code

 Docs

	simplified Usage guide

	improved Localization guide

	updated Comparison guide

 Bug Fixes:

	core: warnings generated by mix docs

	core: compilation failure due to uncompiled backends

	core: compilation lockups / delays

 Tests:

	reached > 90% test coverage

	enforce > 90% test coverage

 v1.1.0 (2025-02-13)

 Features:

	provide assigns directly in conn

	core: add function to print critical messages

 Bug Fixes:

	match patterns fail on trailing slash

	undefined on_mount/4, silent missing attrs/1

 v1.0.0 (2025-02-03)

 Features:

	support Phoenix Liveview >= 1.0

 Bug Fixes:

	ci: upgrade artifact actions in workflow

	core: comp. error - cannot set :struct in struct definition

	incorrect typespecs

	cldr: use territory_from_locale for territory resolution

 v0.x

The CHANGELOG for v0.x releases can be found in the v0.x branch.

Usage

 Requirements

	Elixir >=1.11
	Phoenix >= 1.6.0
	Phoenix LiveView >= 0.16 (optional)

 Installation

You can install this library by adding it to your list of dependencies in mix.exs. (use mix hex.info routex to find the latest version):
def deps do
 [
 ...other deps
+ {:routex, "~> 1.0"}
]
end
Modify the entrypoint of your web interface definition.
file: lib/example_web.ex

+ use Routex.Router # always before Phoenix Router
 use Phoenix.Router, helpers: false

in controller
 unquote(verified_routes())
+ unquote(routex_helpers())

in live_view
 unquote(html_helpers())
+ on_mount(unquote(__MODULE__).Router.RoutexHelpers)

in view_helpers or html_helpers
 unquote(verified_routes())
+ unquote(routex_helpers())

insert new private function
+ defp routex_helpers do
+ quote do
+ import Phoenix.VerifiedRoutes,
+ except: [sigil_p: 2, url: 1, url: 2, url: 3, path: 2, path: 3]
+
+ import unquote(__MODULE__).Router.RoutexHelpers, only: :macros
+ alias unquote(__MODULE__).Router.RoutexHelpers, as: Routes
+ end
+ end

 Configuration

To use Routex, a module that calls use Routex.Backend (referred to below as a
"backend") has to be defined. It includes a list with extensions and
configuration of extensions.
Each extension provides a single feature. The extensions have their own
documentation which specifies how to configure and use them. For a short
description and links to documentation per extension, refer to [EXTENSIONS.md].
Too speed up setup all extensions are included in the configuration below
and extensions are configured to act as drop-in replacements.
Note that you might have to rename some ~p sigils in templates to ~o to
have these routes not be branch aware.
file /lib/example_web/routex_backend.ex

defmodule ExampleWeb.RoutexBackend do
 alias ExampleWeb.RoutexBackend.AltAttrs

defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 # required
 Routex.Extension.AttrGetters,

 # adviced
 Routex.Extension.LiveViewHooks,
 Routex.Extension.Plugs,
 Routex.Extension.VerifiedRoutes,
 Routex.Extension.Alternatives,
 Routex.Extension.AlternativeGetters,
 Routex.Extension.Assigns,
 Routex.Extension.Localize.Phoenix.Routes,
 Routex.Extension.Localize.Phoenix.Runtime,
 Routex.Extension.RuntimeDispatcher,

 # optional
 # Routex.Extension.Translations, # when you want translated routes
 # Routex.Extension.Interpolation, # when path prefixes don't cut it
 # Routex.Extension.RouteHelpers, # when verified routes can't be used
 # Routex.Extension.Cldr, # when coming from the Cldr ecosystem
],
 assigns: %{namespace: :rtx, attrs: [:locale, :language, :region]},
 verified_sigil_routex: "~p",
 verified_url_routex: :url,
 verified_path_routex: :path
end

 Preprocess routes with Routex

Routex will preprocess any route wrapped -either direct or indirect- in a
preprocess_using block. It uses the backend passed as the first argument. This
allows the use of multiple backends (e.g. to use different extensions for admin
routes)
file: router.ex
 pipeline :browser do
 [..]
 plug :put_secure_browser_headers
 plug :fetch_current_user
+ plug :routex
 end

+ preprocess_using ExampleWeb.RoutexBackend do
 scope "/", ExampleWeb do
 pipe_through [:browser, :redirect_if_user_is_authenticated]
 # [...routes...]
 end

 scope "/", ExampleWeb do
 pipe_through [:browser, :require_authenticated_user]
 # [...routes...]
 end
+ end
When you run into issues, please have a look at the Troubleshooting

Localize Phoenix

This tutorial explains how to use Routex to localize your Phoenix
application including multilingual, SEO-friendly URLs. In addition to showing
how to configure Routex, you’ll learn:
	Why localized routes matter: Enhance user experience, improve SEO, and support regional content.
	How Routex works: How the battery included framework supports locatization.
	Step-by-step setup: Configure your backend, set up translations, and add a language switcher.

 What You’ll Build

By the end of this tutorial, you will have:
	A set of locale-specific URLs for your product pages.
	Translated route segments based on your Gettext files.
	A language switcher component that keeps users within their localized scope.
	Guidance on further customization and troubleshooting.

For example, your routes may look like:
 ⇒ /products/:id/edit @loc.locale = "en_US"
 /products/:id/edit ⇒ /eu/nederland/producten/:id/bewerken @loc.locale = "nl_NL"
 ⇒ /eu/france/produit/:id/editar @loc.locale = "fr_FR"
 ⇒ /gb/products/:id/edit @loc.locale = "en_GB"

 Prerequisites

	A working Phoenix project with Routex installed. (See Routex Usage
Guide for installation instructions.)
	Phoenix version ≥ 1.6 and Elixir version ≥ 1.11.

 Terminology

Slightly simplified for your convenience.
	locale: Formatted as language-region. "en-GB" is
shorthand for language "en" and region "GB".
	IANA: The Internet Assigned Numbers Authority provides an official list
of region- and language-identifier including display names
	attribute: custom value assigned to a route
	assign: value accesible using @key in templates
	Accept-Language: The HTTP Accept-Language request header indicates the
 natural language and locale that the software client prefers.

 Step 1: Configuring the Routex Backend

Next, create (or update) your Routex backend module. This configuration
determines which extensions to use, how to generate alternative routes, and how
to integrate translations via Gettext.
An explanation of the configuration is at the bottom of this guide.
defmodule ExampleWeb.RoutexBackend do
 @moduledoc """
 Configures Routex to enable localized and translated routes.
 """

 use Routex.Backend,
 extensions: [
 # == Base extensions ==
 Routex.Extension.AttrGetters, # Base attribute handling
 Routex.Extension.LiveViewHooks, # Inlines LiveView lifecycle callbacks of other extensions
 Routex.Extension.Plugs, # Inlines plug callbacks of other extensions
 # == Used for Localization ==
 Routex.Extension.Localize.Phoenix.Routes, # Localize routes at compile time
 Routex.Extension.Localize.Phoenix.Runtime, # Detects locale from various sources at runtime
 Routex.Extension.Translations, # Enables route segment translations
 Routex.Extension.Alternatives, # Generates locale alternatives set by Localize.Phoenix
 Routex.Extension.AlternativeGetters, # Creates a helper function to get the alternatives for a route
 Routex.Extension.VerifiedRoutes, # Make Phoenix VerifiedRoutes branch (alternatives) aware
 Routex.Extension.RuntimeDispatcher, # Dispatches during runtime (e.g `Gettext.put_locale/{1,2}`)
],

 # Integration with Gettext for route segment translation.
 # Defaults to the standard Gettext module of a Phoenix project.
 # translations_backend: ExampleWeb.Gettext,

 # Drop-in replacements: Override Phoenix VerifiedRoutes macros with Routex variants.
 verified_sigil_routex: "~p",
 verified_sigil_phoenix: "~o",
 verified_url_routex: :url,
 verified_path_routex: :path,

 # Locales to generate routes for: English (Global), Dutch, French, English (Great Brittain) and English (European)
 # All optional. `locales` and `default_locale` will be detected using Cldr, Gettext or Fluent when available.
 # locales: [{"en-001", %{region_display_name: "Worldwide"}}, "nl-NL", "fr-FR", "en-GB", "en-150"],
 # default_locale: "en-100",

 # Custom language detection source priority
 # language_sources: [:query, :session, :cookie, :attrs, :accept_language],

 # Runtime dispatch targets to set Gettext locale from route attribute :language.
 # Shown below is the default.
 # dispatch_targets: [{Gettext, :put_locale, [[:attrs, :language]]}]
end

 Step 2: Translate Route Segments

Generate the translation files for your routes:
mix gettext.extract
mix gettext.merge priv/gettext --locale nl
mix gettext.merge priv/gettext --locale fr

This creates the following structure:
priv/
 gettext/
 nl/
 LC_MESSAGES/
 default.po # phoenix translations
 routes.po # routex translations
 fr/
 LC_MESSAGES/
 default.po # phoenix translations
 routes.po # routex translations
Translate your route segments using any .po file editor (Poedit, OmegaT, etc.).
After you have translated segments, run mix compile --force for trigger a
recompilation with translated routes.

 Step 3: Adding a Language Switcher Component

To improve user experience, add a component that lets users switch locales
seamlessly. Below is an example using a LiveView component with explicit styling
and accessibility features:
<.link
 :for={alternative <- Routes.alternatives(@url)}
 class="button"
 rel="alternate"
 hreflang={alternative.attrs.language}
 navigate={alternative.slug}>
 <.button class={if(alternative.match?, do: "bg-[#FD4F00]", else: "")}>
 <%= alternative.attrs.language_display_name %>
 </.button>
</.link>

 Component Highlights:

	Looping over Alternatives: Fetches all localized route variants for the current URL.
	User Friendly Language Names: Uses the :language_display_name as set by Localize.
	Dynamic Styling: Highlights the current language (using a conditional CSS class).
	Accessible Markup: Uses proper rel and hreflang attributes.

Next Steps: Customize further using Tailwind CSS or your preferred
framework and ensure it meets accessibility standards.

 Troubleshooting & Testing

 Common Pitfalls:

	Missing Translation: Ensure your PO files are updated and merged after any change.
	Route Mismatch: Run mix phx.routes to verify that all localized routes are generated.
	Cookie/Session Issues: Double-check your browser settings if locale detection does not work as expected.

 Additional Features & Customization

	Extending Functionality: If you need more complex transformations,
consider writing your own Routex extension. The Extension Development
Guide offers detailed instructions.
	Combining with Other Extensions: Routex extensions are designed to work
seamless together. Other extensions can be found in the List of Routex
Extensions
	Enhance Usability: Read our guide Localization vs. Translation: Why Your
Website Should Keep Them Separate

 Conclusion

This tutorial has guided you through localizing your Phoenix routes using Routex by:
	Explaining the benefits of localized routes.
	Providing a detailed configuration example with clear commentary.
	Demonstrating how to extract translations and build a language switcher.
	Offering troubleshooting and testing recommendations.

By following these steps, you now have a powerful and flexible routing system
that can adapt to any locale requirement without modifying your templates. For
further enhancements, check the official Routex documentation and join the
discussion on the Elixir Forum.
Happy coding and enjoy creating a multilingual Phoenix application!

 The Configuration Explained

AttrGetters, LiveViewHooks, Plugs:
	Extensions supporting other extensions.

Alternatives Structure:
	Creates a hierarchical URL structure
	Supports regional variations (e.g., European vs British English)
	Associates locales with URL paths
	Supports [language|region]_display_name overrides

Localize with custom language sources:
	Expands route attribute :locale into route attributes :locale, :region, :language, :region_display_name, :language_display_name
	Handles locale detection using a variery of sources including Accept-Language
	Sets attributes :locale, :region and :language at runtime
	Comes with an IANA-based locale registry to validate locale-, region- and language and to convert these to display names
	Custom detection source priority to favor the routes' language over the Accept-Language browser language

Translation Setup:
	Enables path segment translation
	Uses the default translation lib use by Phoenix: Gettext.
	Consistent segment localization

Verified Routess:
	Preserves existing Phoenix path sigils (e.g. ~p"/my/path")
	Adds locale awareness to routes
	Maintains backward compatibility

 AlternativeGetters:
	Fetch alternative locale routes using alternatives(@url)
	Use to generate buttons to switch language

RuntimeDispatcher:
	Configured to call Gettext.put_locale
	Uses the runtime detected attribute :language which is set by Localize.

Localization vs. Translation: Why Your Website Should Keep Them Separate

When expanding a website for a global audience, businesses often confuse
translation with localization. While they are related, treating them as
the same process can lead to usability issues and a poor user experience.
Additionally, many websites make the mistake of assuming that a user's
preferred language matches their physical location, which can cause
frustration.
In this post, we’ll break down the differences between translation and
localization, why your website should separate them, and why language
preferences should not be tied to a user's location.

 The Problem: Conflating Location and Language

Many websites make the mistake of assuming that location dictates language.
While there's often a correlation, it's far from a perfect match. Think about
it:
	Multilingual Regions: Countries like Switzerland, Canada, and Belgium have
multiple official languages. A user in Switzerland might prefer to browse in
German, French, or Italian. Assuming their language based on their IP address
(which indicates location) would be inaccurate.

	Expatriates and Travelers: Someone living abroad might prefer to browse in
their native language, even if they're physically located in a different
country. A German expat in Spain might still want to see the website in
German.

	Language Learning: Some users might prefer to browse in a language they're
learning, regardless of their location.

	Shared Computers: In internet cafes, libraries, or shared family
computers, users might not have control over the browser's language settings.
Relying on these settings can lead to an incorrect language selection.

The Problem with Accept-Language HTTP Header:
Websites often use the Accept-Language HTTP header, sent by the browser, to
determine the user's preferred language. While this can be helpful, it's not
foolproof. As mentioned above, on shared computers, the Accept-Language header
might reflect the preferences of a previous user. Users might also not know how
to change this setting, or it might be locked by system administrators in
certain environments. Therefore, relying solely on this header can lead to a
frustrating experience.
Examples of What Not to Do:
	Automatic Redirection Based on IP: A user in Canada is automatically
redirected to the French version of the site, even though their browser and
system language are set to English. This is a classic example of location
overriding language preference.

	Flag Icons as Language Options: Using flag icons to represent language is
problematic. Flags represent countries, not languages. What about Spanish
speakers in the US? Or English speakers in India? This conflates nationality
with language.

	Hidden Language Settings: Language options are buried deep in the footer
or only appear after navigating through several pages. Users shouldn't have to
hunt for their preferred language.

	Sole Reliance on Accept-Language: The website assumes the browser's
language setting is the user's actual preference, ignoring the possibility of
shared computers or incorrect settings.

 The Solution: Always Give Users Control

The key is to treat location and language as distinct, yet related, pieces of
information and always give users explicit control over both. Here's how to do
it right:
	Explicit Language Selection: Provide clear and prominent language options,
ideally using the language name itself (e.g., "English," "Español," "Deutsch")
rather than flags. Place these options in a visible location, such as the
header or footer, on every page.

	Location as a Secondary Consideration: Use location data (IP address) to
suggest a default language and/or currency, but always allow the user to
override this suggestion. A simple popup or banner saying "We've detected
you're in [Location]. Would you like to view the site in [Suggested Language]?
[Yes/No]" is a good approach. Even if they click "yes," the language option
should still be readily available.

	User Profiles and Preferences: For returning users, store their language
and location preferences in their user profile. This ensures a consistent
experience across sessions.

	Content Localization, Not Just Translation: Consider cultural nuances and
adapt content accordingly. Simply translating text without considering
cultural context can be ineffective or even offensive. Dates, times, and units
of measurement should also be localized.

	Clear Location Settings: If location-specific content is crucial (e.g.,
store locator, shipping information), provide a separate and easy-to-use
location selection mechanism. This could be a dropdown menu or a map
interface.

Example of How to Do It Right:
	A user lands on a website and sees a small popup: "We've detected you're in
the UK. Would you like to view prices in GBP and the site in English?
[Yes/No]"

	Regardless of the user's choice in the popup, a language dropdown menu is
always visible in the header, offering options like "English," "Français,"
"Español," etc.

	The footer contains a link to "Change Location," where the user can specify
their country for location-specific content.

By implementing these best practices, websites can create a more inclusive and
user-friendly experience for their global audience. Respecting the distinction
between location and language, and always giving users the control to choose,
is not just good practice, it's essential for building trust and maximizing your
online reach.

 How Routex' approach helps

Routex's approach to localized routing reinforces the principle of keeping
language and location distinct. No implicit information is embedded in the
routes.
When dealing with region-based pages changing a user's region (and thus the
associated region-specific content) doesn't necessitate an automatic language
switch. And when dealing with language-based pages changing a user's
language doesn't necessitate an automatic region switch.
Imagine a scenario where a user is browsing a region-based site in English
but wants to see the pricing and product availability for the Indian market.
With Routex, they can navigate to the India region-specific page (e.g.,
/in/products) without being forced to switch to another language. The site can
maintain the user's preferred language (English in this case) while displaying
the relevant Indian content.
This is in stark contrast to systems where language and region are implicitly
linked. In such cases, switching regions might inadvertently trigger a language
change, leading to a confusing and frustrating user experience.

 Conclusion

Localization and translation serve different purposes and should be handled
separately to provide the best user experience. Similarly, a user's preferred
language should not be assumed based on their location. By keeping these
elements distinct, websites can ensure better usability, compliance, and
engagement for a global audience.
By adopting a user-first approach, where language is a choice and location
is used only for relevant regional settings, businesses can create a seamless,
accessible, and culturally appropriate experience for all users.

How Routex and Phoenix Router Work Together: A Blueprint for Understanding

 All code on this page is for illustration purpose only. It is incorrect and
 should not be used.How Routex, its extensions, and the Phoenix Router work together can be better
understood through an analogy. As the saying goes, "a picture is worth a
thousand words," this document also includes an illustrative blueprint.

 Analogy: the housing project

Imagine you're a real estate developer planning to build several houses. You
have a general vision for the houses (your route definitions in route.ex) and
some specific ideas about their style and features (your Routex configuration).
routes
/products
/products/:id

config
alternatives: %{
 "/fr" => %{name: "French"},
 "/es" => %{name: "Spanish"}
}
Routex is the architect. It takes your vision (route definitions) and
preferences (Routex config) and creates detailed blueprints.
Routex extensions are the architect's specialized tools. These tools allow the
architect to refine and customize the blueprints. Without them, the architect
could only create basic, unmodified plans.
input
[
%Route{path: "/products"}
%Route{path: "/products/:id"}
]

output after transformation by Alternatives extension
[
%Route{path: "/fr/products", metadata: %{name: "French"}},
%Route{path: "/fr/products/:id", metadata: %{name: "French"}},
%Route{path: "/es/products", metadata: %{name: "Spanish"}},
%Route{path: "/es/products/:id", metadata: %{name: "Spanish"}}
]
Once the blueprints are finalized, they're handed off to the construction
company: Phoenix Router. Phoenix Router builds the actual houses (your routes)
according to the architect's precise specifications. The blueprints are
perfectly formatted for Phoenix Router, ensuring a smooth construction process.
note: incorrect pseudo code

if match?("/fr/products"), do: ProductLive, :index, metadata: ["French"]
if match?("/fr/products/" <> id), do: ProductLive, :show, metadata: ["French"]
if match?("/es/products"), do: ProductLive, :index, metadata: ["Spanish"]
if match?("/es/products/" <> id), do: ProductLive, :show, metadata: ["Spanish"]
This explains the first key concept:
Routex generates blueprints from your route definitions and configuration,
ready for Phoenix Router to build the actual routes.

Because Routex is the architect, it has intimate knowledge of the house designs.
This allows it to create perfectly matching accessories, like custom-designed
sunshades or smart garage doors. These are additional features that enhance
the houses built by Phoenix Router, adding convenience and functionality.
generated convenient functions
defmodule Helpers do
 def alternatives("/products") do
 [
 %Route{path: "/fr/products", name: "French"},
 %Route{path: "/es/products", name: "Spanish"}
]
 end
end

your usage
This page is available in:
for alt <- Helpers.alternatives("/products") do
 <.link navigate={alt.path}>{alt.name}<./link>
end

output
This page is available in:
French
Spanish
This leads to the second key concept:
Routex also creates helpful accessory functions that you can use with the
houses (routes) built by Phoenix Router. These functions streamline common
tasks and improve the overall experience.

 Example blueprint

A picture paints a thousand words, or so they say. The blueprint clearly shows
how Routex is middleware, plugged between two stages of Phoenix route generation.
Also shown is the use two co-operating extensions: Translations uses the
:language attribute set by Alternatives.
flowchart TD
 subgraph subGraph1["Routex"]
 F["ExampleWeb.RoutexBackend.ex"]
 G["configure/2 callbacks"]
 H["Alternatives.transform/3 callback"]
 I["Translations.transform/3 callback"]
 J["create_helpers/3 callbacks"]
 K["ExampleWeb.Router.RoutexHelpers"]
 end
 subgraph subGraph0["Phoenix"]
 A["ExampleWeb.Router.ex"]
 B["Convert to Phoenix.Routes.Route structs"]
 C["Generate route functions"]
 D["ExampleWeb.Router"]
 end
 A -- "/products/:id" --> B
 B -- "%{path: /products/:id}" --> H
 F -- "extensions: [Alternatives, Translations]" --> G
 G --> H
 H -- "%{path: ..., attrs: %{lang: fr}}
 %{path: ..., attrs: %{lang: es}}" --> I
 I -- "%{path: /produit/:id, attrs: ...}
 %{path: /producto/:id, attrs: ...}" --> C

 History of Routex - Routex v1.2.2

History of Routex

 Summary

From its humble beginnings as PhxAltRoutes—a proof-of-concept for localized
routing in Phoenix—to the modular, extension-driven framework that Routex is
today, this is the story of how community feedback, design constraints, and the
immutable spirit of Elixir shaped a next-generation routing library. Along the
way, we’ll trace the key design pivots that led to Routex’s pluggable core,
shim-based integration, and stateless, inspectable architecture.

 Origins: PhxAltRoutes and the Rise of Localized Routing

The concept of compile-time generation of localized and translated routes (using
Gettext) first emerged back in March 2021 when I, Bart Otten, first posted about
PhxAltRoutes
to be followed by a post in Februari 2022 asking the community for feedback and
collaboration.
The early review phase resulted in PhxAltRoutes being renamed Phoenix
Localized Routes (PLR) to better reflect its main use case and the
introduction of the PhxAltRoutes-inspired Cldr-Routes in late March 2022 by
the maintainer of Cldr.
With two libs in production, developers could write:
Import localized route macros
use Phoenix.LocalizedRoutes # or Cldr.Routes

localize do
 get "/pages/:page", PageController, :show
 resources "/users", UserController
end
And have their routes expanded to localize routes at compile time. Great!

 Localized Routes: Promise and Pain Points

But as usage grew, so did the cracks:
	Code Duplication: PLR and Cldr-Routes forked bits of Phoenix’s router
internals, making every upstream Phoenix update a potential breaking change.
	Monolithic Design: Projects needing PLR for one feature faced the full
library, leading to bloat. Cldr-Routes -being an extension itself- needs the
Cldr base library to function. If you are not (yet) into the Cldr ecosystem,
I consider it a heavy weight to pull in and configure.
	One-Size-Fits-All: From greenfield apps to legacy codebases, each
project’s needs varied— both PLR and Cldr-Routes don’t or didn't adapt the way
I envisioned.
	Maintenance Overhead: Every new route feature forced code changes across
user projects, straining both library and app maintainers.
	Stateful Routing: PLR and Cldr-Routes lean on process state, a mismatch
with Elixir’s immutable ethos.

These lessons set the stage for a reinvented approach.

 Reinventing (Localized) Routing: Birth of Routex

In early 2023, I sketched out a fresh vision: a slim core with pluggable
extensions, a name that hinted at both routing and extensibility—Routex.
“Route + Elixir. Route + Extensions. Route + Extendable—pick your flavor.”

Key principles emerged:
	Only What You Need: A minimal core handles just the essentials; extensions
add features as needed.
	Shim, Don’t Copy: Rather than replicating Phoenix internals, shim public
APIs and delegates to the official public Phoenix functions, so upstream
changes flow through automatically.
	Stateless by Default: No process state. (Alternative) Route lookup remains
pure and immutable, fitting Elixir’s design philosophy.
	Inspectability: Route definitions flow through opts and structs,
making callbacks transparent and chainable.
	Configuration-Driven: Add features by toggling extensions in config—no
code scattering.

 Core Architecture and Extensibility

At the heart of Routex is a processing pipeline: It takes the routes and a list
of extensions and reduces the list of extensions with the routes as argument.
As a result, the extensions -implementing one or more of four well-defined
callbacks: configure/2, transform/3, post_transform/3, and
create_helpers/3- receive inspectable route structs and opts, allowing
transparent, composable modifications.
Meanwhile, Routex.Attrs provides a shared metadata store so extensions like
Routex.Extension.Localize.Phoenix.Runtime (for runtime locale detection) and
Routex.Extension.Translations (for translated route paths) can cooperate
without stepping on each other’s toes.

 Immutability and Pattern Matching in Action

Under the hood, Routex uses immutable pattern matching to transform
normal routes into branch aware (auto-scoping) routes.
This is different from some other libraries that use mutable (process-bound)
state. It's a subtle difference, but one that matters.
Pseudo code: The mutable way (aka: standard Javascript demo)

Somewhere in your templates a link to 'products' in the current scope.
<link href=~p"/products">Products</link> # => /products

for locale <- ["en", "fr"] do
 put_locale(locale) # setting state
 <link href=~p"/products">{locale}</link>
end

Somewhere in a used component a link to products...guess in which scope.
<link href=~p"/products">Products</link>

Routex does it different, pure. At compile time it generates url pattern
matching helpers. As a result, no state is involved and Routex is not coupled to
the current process.
Pseudo code: The immutable Routex way (simplified)

Somewhere in your templates a link to products in the current scope.
<link href=~p"/products">Products</link> # => /products

inefficient use for demonstration purpose
for locale <- ["en", "fr"] do
 alt = alternatives(@url)[locale]
 <link href=alt.slug>{locale}</link>
end

Somewhere in a used component a link to 'products' in the current scope.
<link href=~p"/products">Products</link>
No hidden state. No surprises. Just Elixir.

 Configuration above all else

The development of Routex has a mission credo: "Simple by default, powerful when
needed". Setup should be minimal, yet you should be able to adapt Routex to your
project instead of the other way around like previous attempts.
For example, the Routex.Extension.VerifiedRoutes lets you customize the sigil
letter and helper names. These can be set to match Phoenix’s defaults -to avoid
template churn- or those of Cldr-Routes -to ease migration-. As such, a project
can opt into (locale) branch aware Verified Routes by Routex seamlessly—no hard
forks in your code.

 Localization Reimagined with Localize.Phoenix

With the groundwork laid, I revisited the original primary use case early 2025:
localization. This time however, it was just an optional use case out of
multiple supported by Routex instead of the only one. Its implementation is a
testament to the design choices made upfront.
Routex.Extension.Localize.Phoenix offers:
	Automated Plug and LiveView integration at runtime.
	A minimal locale registry based on IANA standards.
	Customizable locale detection strategies.
	Support for multiple locale backends.
	All configured via a few entries in config.exs, with no changes to route
definitions or templates.

 Community Feedback and the Road Ahead

Looking forward, the vision remains clear: empower developers to craft custom
routing logic with minimal friction, leverage Elixir’s immutability, and foster
a vibrant ecosystem of extensions. Routex is designed to grow with your
application, not weigh it down.
“Routing should adapt to every project’s needs, without forcing projects to
adapt to the router.”

And that’s how PhxAltRoutes evolved, lessons were learned, and Routex was
born—ready to supercharge Phoenix routing with extension-driven superpowers!
— Bart Otten

 Routing solutions compared - Routex v1.2.2

Routing Solutions for Phoenix: A Developer-Centric Comparison

When building applications with the Phoenix framework, you might need additional
routing solutions. Requirements can range from the common internationalization
and localization to more exotic such as route obfuscation. Selecting the right
tool is essential. This article compares two libraries that extend the Phoenix
Router: Cldr Routes and Routex.
We’ll examine differences in functionality, extensibility, integration, runtime
capabilities, and customization. By the end, you’ll have a clearer picture of
each solution’s strengths and limitations to help you decide which is best for
your project.

 Summary

Both Cldr Routes and Routex extend Phoenix Router in meaningful ways.
Cldr Routes
Cldr Routes provides route translation and generates localized path and URL
helpers. While Cldr Routes streamlines the process of creating localized routes,
it necessitates proper configuration of both Cldr and Gettext. This requirement
is advantageous for projects already utilizing these libraries but may involve
additional setup for others.
Cldr Routes is particularly well-suited for applications that are already part
of the Cldr ecosystem and require straightforward URL translations.
Routex
​Routex is a comprehensive routing framework built on Phoenix Router, offering
extensive internationalization and localization features that encompass all
capabilities of Cldr Routes. Beyond these, Routex introduces a versatile set of
functionalities, including runtime support through built-in Plug and LiveView
lifecycle hooks, as well as customizable function callbacks for navigation
events. ​
A key strength of Routex lies in its seamless integration with existing
codebases, preserving established patterns. Its modular architecture and
extensive customization options enable developers to incorporate custom route
attributes and alternative routing strategies with minimal disruption. This
flexibility ensures that Routex can adapt to the specific needs of any project,
enhancing routing capabilities without necessitating significant codebase
modifications. ​
Routex is recommended for new projects or projects needing to retrofit routing
features into the existing code bases. Its focus on developer experience means
you spend less time configuring and more time building innovative
applications.For projects invested in Cldr it offers Routex.Extension.Cldr as
a convenient adapter mimicing Cldr Routes.

 Tabular comparison

A quick overview before diving into a detailed explanation:
	Feature	Routex	Cldr Routes
	Localized routes	Yes	Yes
	Translated routes	Yes	Yes
	Verified Routes	Yes	Yes
	Route interpolation	Yes	Yes
	Alternatives routes	Yes	Limited
	Custom attributes	Yes	No
	Custom assigns	Yes	No
	Plug & Hooks	Yes	No
	Navigation callbacks	Yes	No
	Buildin locale registry	Yes	No
	Route Obfuscation	Yes	No
			
	Integration	Routex	Cldr Routes
	Sigils	Customizable	Fixed
	Functions	Customizable	Fixed
	Libs integration	COnfigurable	None
	Dependencies	Configurable	Cldr, Gettext
	Runtime integration	Automated	None
			
	Development	Routex	Cldr Routes
	Architecture	Modular	Monolithic
	Feature inclusion	Upstream or extension	Upstream or own fork
	Internal format	Route structs	Abstract Syntax Tree (AST)
	Tooling included	Yes	No

 Feature Set & Extensibility

Both libraries were inspired by PhxAltRoutes—a pioneering localized
routing effort by Routex’s creator—but have since taken distinct evolutionary
paths.
Cldr Routes
Reduced the feature set to localization features only. Aligning with the goals
of Cldr.
	Localization: Translates URL path segments at compile time and generates
localized helper functions.
	Fixed Integration: Relies on the Cldr and Gettext libraries for
localization.

Routex
Designed to be modular; allowing to grow the feature set beyond localization
without becoming a large monolithic lib and supporting extension orchestration through
value passing.
	Comprehensive Feature Set: Beyond matching the internationalization and
localization capabilities of Cldr Routes, Routex also offers advanced features
like custom assigns, alternative route generation, and support for route
segment reordering —providing unmatched flexibility
	Integrated Extensions: Built-in support for Plugs and LiveView lifecycle
hooks automates integrations and speeds up development.
	Integrated locale registry: Routex comes with a simplified -IANA subtag
registry based- locale registry . It covers common localisation use cases such as
translating locale, region and language identifiers to display names and
validating locale tags.
	Modular Architecture: Its extension-driven architecture allows you to
include only the features you need and easily create custom extensions.
	Focus on Customization: The mantra "Simple by default, powerful when
needed" drives the development of extensions. Extensions ship with sane
defaults yet are highly tweakable due to a sheer amount of configuration
options.
	Tailor-Made Customization: Its modular architecture and the information
sharing system Routex.Attrs lets you extend functionality without having to
worry about the core of routing or breaking other extensions. Clone an
extension, tweak it to your needs, or build new ones from scratch.

Below is a feature comparison summarizing key differences:

 Localized Routes

While both libraries feature localized routes, Routex offers customization
options such a customized locale notation and display name overrides for
languages and regions.

 Translated Routes

While both libraries feature translate routes by depending on Gettext, Routex
only depends on Gettext when the Translations extension is enabled.

 Route Manipulation

Both libraries feature route manipulation in different degrees. Transformations
by Cldr Routes are limited to localization. Routex, in contrast, allows for any
kind of transformation including custom attributes, non-locale alternative
routes, and route segment reordering.

 Plug & LiveView Integration

Only Routex provides native support for Plug and LiveView extensions

 Dependencies

Cldr Routes requires Cldr and Gettext. Although Routex core has no dependencies
on itself extensions may require additional dependencies. At this moment only
the Translations extension has a dependency: Gettext.

 Integration with other packages

Unlike Cldr Routes, Routex is designed to seamlessly integrate with any
third-party package you choose. This flexibility allows you to combine Routex
with your existing package stack or custom solutions, tailoring its
functionality to meet the specific needs of your application.

 Developer Experience & Integration

Cldr Routes
Streamlines localized route generation. However, its tight integration with the
Cldr suite and limited configuration options can limit flexibility and often
necessitates adjustments in templates and code. Requiring the use of a custom
sigil ~q for verified routers and q prefixed helper macros, it necessitates
adjustments in existing templates and newly generated ones. The impact depends
on the size of the code base and the use of generators.
Example in Cldr Routes:

Uses custom sigil ~q for localized routes
<.link navigate=~q"/products/#{product}">My Link</.link>
Routex
In contrast, Routex offers extensive configurability -such as customizable
sigils and function names. It can be configured to shim the default Phoenix
sigil ~p and helper macros url and path or mimic Cldr Routes for Cldr
integration by using it's custom sigil and macros names. Meaning you can
seamlessly incorporate Routex into your existing projects, preserving familiar
patterns while enjoying cutting-edge features. Support for extensions with
runtime features reduce manual wiring.
Example in Routex:

Configurable to use standard Phoenix sigil ~p (as used in Phoenix' generators)
<.link navigate=~p"/products/#{product}">My Link</.link>

or mimic Cldr Routes using sigil ~q
<.link navigate=~q"/products/#{product}">My Link</.link>
This flexibility is particularly useful when integrating with existing projects
and code bases.

 Route processing

Both projects generate routes during compile time. It's the way how they
do this and their runtime capabilities that makes the difference.
Cldr Routes
Cldr Routes takes your original route definition Abstract Syntaxt Tree (AST)
within a localize block and transforms it into a new AST with localized paths.
There are no points for interception or extension points in this proces.
 localize do
 get "/pages/:page", PageController, :show
 resources "/users", UserController
 end
Routex
Routex intercepts your route definitions after they have been converted into
straightforward Route structs. It's extension processing system uses "value
passing" so each extension in the pipeline receives the route structs including
attributes and can modify or augment them before passing the updated routes on
to the next extension. This approach makes it easier to trace and debug route
transformations at compile time.
At the end of the processing Routex passes the route structs to Phoenix Router
for native compilation.
This approach leverages the simpler and more predictable structure of Route
structs and route compilation by Phoenix Router itself, making the system more
flexible, simpler to extend and easier to understand.
Routex supports the use of multiple configuration backends in one router. This means
that routes can have their own transformations, helper functions, or runtime features.

using configuration ExampleWeb.RoutexBackend
preprocess_using ExampleWeb.RoutexBackend do
 get "/pages/:page", PageController, :show
 resources "/users", UserController
end

using ExampleWeb.RoutexBackendAdmin
preprocess_using ExampleWeb.RoutexBackendAdmin do
 get "/admin/:page", PageController, :show
end

 Runtime capabilities

Cldr Routes
Cldr Routes features only branching verified routes during runtime. It relies on
external dependencies (like Cldr Plugs) to manage runtime locale detection,
which necessitates adjustments in configuration and code for runtime
localization.
Routex Routex offers virtually unlimited runtime features and integration by
integrating native extension Routex.Extension.RuntimeDispatcher for dynamic
functionality. This can be combined with other extensions -such as
Routex.Extension.Localize.Phoenix.Runtime for highly customizable locale
detection and behavior during runtime.
defmodule ExampleWeb.RoutexBackend do
use Routex.Backend, # makes this a Routex configuration backend
extensions: [
 Routex.Extension.Attrs,
 Routex.Extension.Localize, # detects locale, and puts it in runtime attributes
 Routex.Extension.RuntimeDispatcher # call arbitrary functions during runtime using route attributes
],
configuration of arbitrary functions to be called at navigation events.
dispatch_targets: [
 # Set Gettext locale from :language attribute
 {Gettext, :put_locale, [[:attrs, :language]]},
 # Call arbitrary function using other runtime attribute
 {MyApp, :my_function, ["my value", [:attrs, :runtime_attr_value], "other value"]}
]
end
Routex supports extension-provided plugs and hooks that are generated at compile
time. By leveraging Elixir's powerful pattern matching, these plugs and hooks
are optimized for performance, ensuring minimal runtime overhead even when
multiple runtime dispatch targets are enabled.​

 Conclusion

In summary, both Cldr Routes and Routex significantly enhance Phoenix’s routing
capabilities, but they cater to different project needs. Cldr Routes offers a
streamlined, localized routing solution ideal for applications already using the
Cldr and Gettext ecosystems.
On the other hand, Routex stands out with its modular and extensible
architecture. It not only replicates the localization features of Cldr Routes
but also introduces advanced functionalities—such as customizable route
attributes, runtime dispatching to external libs, and seamless integration with
Plug and LiveView. This flexibility makes Routex a powerful choice for both new
projects and those looking to integrate dynamic routing features into an
existing codebase.
Ultimately, the decision between these libraries will depend on your project’s
requirements, existing dependencies, and desired level of customization. For
developers seeking a robust and adaptive routing framework, Routex offers
extensive configurability and a richer feature set, while Cldr Routes remains a
compelling choice for straightforward localization needs.

The `routex` -formerly known as `route_match`- as used by HandleCommerce
is not related to the Routex as decribed in this document.

 Extensions - Routex v1.2.2

Routex Extensions

List of extensions
A list of included extensions can be found in the README.
Routex Extensions extend the functionality provided by Routex to transform
routes or generate new route based helper functions. Each extension is a module
which implements the Routex.Extension behaviour.
Routex will call those callbacks at different stages before Routex handsoff the
list with routes to Phoenix.Router for compilation.
Each extension provides a single feature and should minimize hard dependencies
on other extensions. Instead, Routex advises to make use of the Routex.Attrs
system to share attributes; allowing extensions to work together without being
coupled.
The documentation of each extension lists any provided or required
Routex.Attrs.

 Callbacks and stages

 Stage 1: Configure

This stage enables extensions to preprocess backend options upfront.
The configure/2 callback is called with the options provided to
Routex.Backend and the name of the Routex backend. It is expected to return a
new list of options.
Routex collects all options in this stage for subsequent stages. Therefore,
extensions should add any fallback/default they might use themselves to the
options in this stage.
To aid in code completion, the final configuration is passed as a struct to
subsequent stages.

 Stage 2: Transform

This stage is meant to change the properties of routes, which are at that moment
Phoenix.Router.Route structs. The routes are grouped by Routex backend and
processed per group, allowing an extension to use accumulating values within one
iteration.
The transform/3 callback is called with a list of routes belonging to a
Routex backend, the name of the backend and the current environment. It is
expected to return a list of Phoenix.Router.Route structs.
Flattening option values
Extensions can make use of Routex.Attrs provided by Routex itself, Routex
backends and other extensions.
To make the availability of the attributes as predictable as possible, Routex
uses a flat structure which is stored in a routes' private.routex field.
However, using a flat structure might conflict with developer experience;
sometimes a nested structure to provide configuration options might be more
suitable.
One responsibility of the transform/3 callback is to flatten the structure of
attributes they use for each route they receive, so other extensions can use
attributes set by the current extension without knowledge of the configuration
structure.
Example
The Alternatives extension uses nested options and allows inheritance
of attributes from parent branches.
alternatives: %{
 "/" =>
 helper: nil,
 locale: "en_GB",
 branches: %{
 "nl" => %{
 helper: "nl",
 locale: "nl_NL"
 },
 "gb" => %{
 helper: "gb",
 }
 }
}
The Alternatives module is therefor responsible for flattening those for
(itself and) other extensions to use. To take the route responsible for the
"gb" branch as an example, the extension should add flattened attributes in the
Route struct. It can do so using the helper function Routex.Attrs.put/2.
Routex.Attrs.put(route, [locale: "en_GB", helper: "gb"])
Now the Translation extension can search for the option :locale in the
route's attributes, unaware of how that locale was initially configured.

 Stage 3: Post Transform

The post_transform stage can be used knowing all other attributes of a route
are available and no path will be transformed any further.

 Stage 4: Create helper functions

In this stage helper functions can be generated which will be added to
MyAppWeb.Router.RoutexHelpers.
The create_helpers/3 callback is called with a list of routes belonging to a
Routex backend, the name of the Routex backend and the current environment.
It is expected to return Elixir AST.
As a result the developer only has to import MyAppWeb.Router.RoutexHelpers
for all helpers generated by extensions to be included in the app.

 Guidelines

	make functions not defined by the Routex.Extension behaviour private.
	provide as many options and Routex.Attrs as possible; other extensions might use the information.
	provide additional options and Routex.Attrs as flat list(s) so other extensions don't have to guess structure.
	as other extensions might use options set by your extension, try to preserve any previously defined option or Routex.Attrs in future development

 Important information about creating helpers

In Elixir, it's common practice to define multiple function clauses to handle
different routes or patterns. However, during compilation, the Elixir compiler
(leveraging the underlying Erlang compiler) transforms these multiple function
clauses into a single function that uses a case expression for pattern matching.
The key issue here isn't the efficiency of a case statement at runtime; rather,
it's the transformation process itself. When you have hundreds of function
clauses, the compiler must merge them into one case expression, which can lead
to significant compile-time overhead.
To mitigate this, consider defining a single function clause that directly
contains an explicit case expression. By doing so, you avoid triggering the
compiler’s internal transformation process on a large number of separate
clauses, thereby reducing the compile-time cost while keeping your runtime
behavior clear and efficient.
Bad
def my_generated_helper("a"), do: "A"
def my_generated_helper("b"), do: "B"
def my_generated_helper("c"), do: "C"
Good
def my_generated_helper(letter) do
 case letter do
 "a" -> "A"
 "b" -> "B"
 "c" -> "C"
 end
end

 Documentation

@moduledoc """
Summary of feature provided.

Options
- `name` - description

Example configuration
```diff
# file lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
  use Routex.Backend,
  extensions: [
+   Routex.Extension.Name
    Routex.Extension.Attrs
],
+ name_config: [name_opt: "value"]
```

Usage example
```elixir
# file lib/example_web/template.ex
transform_template("/products/:id/edit")
```

Pseudo result
```
/products/:id/edit  ⇒ /products/:id/edit
```

`Routex.Attrs`
Requires
- none

Sets
- none

Helpers
function_name(arg1 :: type) :: type
"""

 Contributing - Routex v1.2.2

Contributing to Routex

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved!

 Using the issue tracker

Use the issues tracker for:
	Bug reports
	Submitting pull requests

Please do not use the issue tracker for personal support requests nor feature requests.
Feature and support requests should be created on the Elixir forum and be tagged with at least routex
	Support Request
	Feature Request

We do our best to keep the issue tracker tidy and organized, making it useful
for everyone. For example, we classify open issues per perceived difficulty,
making it easier for developers to contribute to Routex.

 Bug reports

A bug is either a demonstrable problem that is caused by the code in the repository,
or indicate missing, unclear, or misleading documentation. Good bug reports are extremely
helpful - thank you!
Guidelines for bug reports:
	Use the GitHub issue search — check if the issue has already been
reported.

	Check if the issue has been fixed — try to reproduce it using the
master branch in the repository.

	Isolate and report the problem — ideally create a reduced test
case.

Please try to be as detailed as possible in your report. Include information about
your Erlang, Elixir, Phoenix and Phoenix LiveView versions. Please provide steps to
reproduce the issue as well as the outcome you were expecting! All these details
will help developers to fix any potential bugs.
Example:
Short and descriptive example bug report title
A summary of the issue and the environment in which it occurs. If suitable,
include the steps required to reproduce the bug.
	This is the first step
	This is the second step
	Further steps, etc.

<url> - a link to the reduced test case (e.g. a GitHub Gist)
Any other information you want to share that is relevant to the issue being
reported. This might include the lines of code that you have identified as
causing the bug, and potential solutions (and your opinions on their
merits).

 Feature requests

Feature requests are welcome and should be discussed on the Routex topic on the Elixir forum. But take a moment to find
out whether your idea fits with the scope and aims of the project. It's up to you
to make a strong case to convince the community of the merits of this feature.
Please provide as much detail and context as possible.

 Pull requests

Good pull requests - patches, improvements, new features - are a fantastic
help. They should remain focused in scope and avoid containing unrelated
commits.
IMPORTANT: By submitting a patch, you agree that your work will be
licensed under the license used by the project.
If you have any large pull request in mind (e.g. implementing features,
refactoring code, etc), please ask first otherwise you risk spending
a lot of time working on something that the project's developers might
not want to merge into the project.
Please adhere to the coding conventions in the project (indentation,
accurate comments, etc.) and don't forget to add your own tests and
documentation. When working with git, we recommend the following process
in order to craft an excellent pull request:
	Fork the project, clone your fork,
and configure the remotes:
Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/routex
Navigate to the newly cloned directory
cd phoenix
Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/BartOtten/routex

	If you cloned a while ago, get the latest changes from upstream, and update your fork:
git checkout master
git pull upstream master
git push

	Create a new topic branch (off of master) to contain your feature, change,
or fix.
IMPORTANT: Making changes in master is discouraged. You should always
keep your local master in sync with upstream master and make your
changes in topic branches.
git checkout -b <topic-branch-name>

	Commit your changes in logical chunks. Keep your commit messages organized,
with a short description in the first line and more detailed information on
the following lines. Feel free to use Git's
interactive rebase
feature to tidy up your commits before making them public.

	Make sure all the tests are still passing.
mix test

	Push your topic branch up to your fork:
git push origin <topic-branch-name>

	Open a Pull Request
 with a clear title and description.

	If you haven't updated your pull request for a while, you should consider
rebasing on master and resolving any conflicts.
IMPORTANT: Never ever merge upstream master into your branches. You
should always git rebase on master to bring your changes up to date when
necessary.
git checkout master
git pull upstream master
git checkout <your-topic-branch>
git rebase master

Thank you for your contributions!

 Guides

These Guides aim to be inclusive. We use "we" and "our" instead of "you" and
"your" to foster this sense of inclusion.
Ideally there is something for everybody in each guide, from beginner to expert.
This is hard, maybe impossible. When we need to compromise, we do so on behalf
of beginning users because expert users have more tools at their disposal to
help themselves.
The general pattern we use for presenting information is to first introduce a
small, discrete topic, then write a small amount of code to demonstrate the
concept, then verify that the code worked.
In this way, we build from small, easily digestible concepts into more complex
ones. The shorter this cycle is, as long as the information is still clear and
complete, the better.
For formatting the guides:
	We use the "elixir" code fence for all module code.
	We use the "console" code fence for iex and shell commands.
	We use the "html" code fence for html templates, even if there is elixir code
in the template.
	We use backticks for filenames and directory paths.
	We use backticks for module names, function names, and variable names.

 Troubleshooting - Routex v1.2.2

Troubleshooting

 Where can I find ExampleWeb.Router.RoutexHelpers?

This module does not have a code file. It is generated during compile time
by Routex. You should be able to see a message in the output like the one below:
Completed: ExampleWeb.RoutexCldrBackend ⇒ Routex.Extension.VerifiedRoutes.create_helpers/3
Create or update helper module ExampleWeb.Router.RoutexHelpers
Once your project is compiled, you can access it in iex.
iex> exports ExampleWeb.Router.RoutexHelper
alternatives/1 attrs/1 on_mount/4
sigil_o/2 sigil_p/2 url/1
url/2 url/3 url_phx/1

iex> h ExampleWeb.Router.RoutexHelper.attrs

 def attrs(url)
Returns Routex attributes of given URL

 Compilation

If you run into compilation issues try these solutions first. If they
do not solve the issue or the issue re-appears, fell free to open an issue.

 Clearing your _build folder

Clearing your build folder might fix issues; especially when the
order of module compilation is the suspect.
rm -Rf _build && mix compile

 Debugging

When your application fails to compile you might find the cause by setting the
environment variable ROUTEX_DEBUG to true.
ROUTEX_DEBUG=true mix compile
Do note that this might show early compilation issues, but will make the final
compilation fail at all times.

 Routex.Test.Fixtures - Routex v1.2.2

Routex.Test.Fixtures

 Summary

 Functions

 branches()

 branches_flat()

 branches_precomputed()

 branches_with_map_attrs()

 Functions

 branches()

 branches_flat()

 branches_precomputed()

 branches_with_map_attrs()

 Routex.Test.Fixtures.Assigns - Routex v1.2.2

Routex.Test.Fixtures.Assigns

 Routex.Test.Support.Gettext - Routex v1.2.2

Routex.Test.Support.Gettext

 Summary

 Functions

 handle_missing_bindings(exception, incomplete)

 Callback implementation for Gettext.Backend.handle_missing_bindings/2.

 handle_missing_plural_translation(locale, domain, msgctxt, msgid, msgid_plural, n, bindings)

 Callback implementation for Gettext.Backend.handle_missing_plural_translation/7.

 handle_missing_translation(locale, domain, msgctxt, msgid, bindings)

 Callback implementation for Gettext.Backend.handle_missing_translation/5.

 Functions

 handle_missing_bindings(exception, incomplete)

Callback implementation for Gettext.Backend.handle_missing_bindings/2.

 handle_missing_plural_translation(locale, domain, msgctxt, msgid, msgid_plural, n, bindings)

Callback implementation for Gettext.Backend.handle_missing_plural_translation/7.

 handle_missing_translation(locale, domain, msgctxt, msgid, bindings)

Callback implementation for Gettext.Backend.handle_missing_translation/5.

 Routex - Routex v1.2.2

Routex

 Routex enhances the Phoenix Router by providing an extension-driven framework
 for advanced routing capabilities. It simplifies route manipulation, offering
 features such as internationalization (i18n), localization (l10n), translated
 (multilingual) URLs, and alternative route generation.

 Features
	Internationalization (i18n) and Localization (l10n):
Seamlessly integrate multilingual support into your Phoenix applications,
allowing routes to adapt based on locale settings.

	Translated URLs:
Generate and manage URLs in multiple languages, enhancing user experience
for global audiences.

	Alternative Route Generation:
Create multiple route variations effortlessly, catering to diverse routing
requirements.

	Extensible Architecture:
Leverage a modern, extensible architecture to build custom solutions that
work harmoniously with existing extensions.

 Documentation and Resources
 For comprehensive information and guidance, refer to the following resources
 relative to the project's root directory:
	README.md:
Overview of the project, including installation instructions and basic
usage.

	USAGE.md:
Detailed guidance on implementing and utilizing Routex's functionalities.

	CONTRIBUTING.md:
Guidelines for contributing to the project, including coding standards and
submission processes.

	docs/COMPARISON.md:
Comparison with similar tools or libraries, highlighting unique features
and advantages.

	docs/EXTENSION_DEVELOPMENT.md:
Instructions on developing extensions to enhance or customize Routex's
capabilities.

	docs/EXTENSIONS.md:
Summaries of available extensions, detailing their functionalities and
integration methods.

	docs/ROUTEX_AND_PHOENIX_ROUTER.md:
Explanation of how Routex integrates with the Phoenix Router, providing a
blueprint for understanding their collaboration.

 Routex.Attrs - Routex v1.2.2

Routex.Attrs

Provides an interface to access and update Routex attributes
in routes, sockets, or connections (hereinafter containers).
Extensions can make use of Routex.Attrs values provided by Routex itself,
Routex backends, and other extensions. As these values are attributes to a route,
one extension can use values set by another.
Other extensions set Routex.Attrs (see each extension’s documentation for the
list of attributes they set). To define custom attributes for routes, see
Routex.Extension.Alternatives.
	To ensure predictable availability, Routex uses a flat structure.
	Extension developers are encouraged to embed as much contextual information as possible.
	Extensions should add any fallback/default they might use to the attributes.

 Summary

 Types

 attrs_fun()

 container()

 key()

 t()

 update_fun()

 value()

 Functions

 cleanup(route_sock_or_conn)

 Removes non-private fields from attributes.

 get(route_sock_or_conn, key \\ nil, default \\ nil)

 Retrieves the value for key from the container's attributes, or returns default.

 get!(route_sock_or_conn, key, error_msg \\ nil)

 Retrieves the value for key from the container's attributes.

 merge(route_sock_or_conn, value)

 Merges the given value into the container's attributes.

 merge(route_sock_or_conn, key, value)

 private?(key)

 Returns true if the given key or attribute tuple represents a private attribute.

 put(route_sock_or_conn, value)

 Replaces the container's attributes with the provided map.

 put(route_sock_or_conn, key, value)

 Assigns value to key in the container's attributes.

 update(route_sock_or_conn, fun)

 Updates the container's attributes by applying the given function.

 update(route_sock_or_conn, key, fun)

 Updates the value assigned to key in the container's attributes by applying the given function.

 Types

 attrs_fun()

 @type attrs_fun() :: (map() -> Enumerable.t())

 container()

 @type container() ::
 Phoenix.Router.Route.t()
 | Phoenix.Socket.t()
 | Phoenix.LiveView.Socket.t()
 | Plug.Conn.t()

 key()

 @type key() :: atom()

 t()

 @type t() :: %{optional(key()) => value()}

 update_fun()

 @type update_fun() :: (value() -> value())

 value()

 @type value() :: any()

 Functions

 cleanup(route_sock_or_conn)

 @spec cleanup(map() | container()) :: map() | container()

Removes non-private fields from attributes.
When given a plain map, it filters the map to include only keys starting with "__".
When given a container (a map with a :private key), it filters the :routex attributes
in the private map.

 get(route_sock_or_conn, key \\ nil, default \\ nil)

 @spec get(container(), key() | nil, value() | map()) :: value() | map()

Retrieves the value for key from the container's attributes, or returns default.
When no key is provided, returns the entire attributes map.

 get!(route_sock_or_conn, key, error_msg \\ nil)

 @spec get!(container(), key(), String.t() | nil) :: value() | no_return()

Retrieves the value for key from the container's attributes.
Raises an error (with an optional custom message) if the key is not found.

 merge(route_sock_or_conn, value)

 @spec merge(container(), keyword() | map()) :: container()

Merges the given value into the container's attributes.
The value can be either a list of key-value pairs or a map.

 merge(route_sock_or_conn, key, value)

 private?(key)

 @spec private?({atom(), any()} | atom()) :: boolean()

Returns true if the given key or attribute tuple represents a private attribute.
A private attribute is one whose name starts with "__".

 put(route_sock_or_conn, value)

 @spec put(container(), map()) :: container()

Replaces the container's attributes with the provided map.

 put(route_sock_or_conn, key, value)

 @spec put(container(), key(), value()) :: container()

Assigns value to key in the container's attributes.

 update(route_sock_or_conn, fun)

 @spec update(container(), attrs_fun()) :: container()

Updates the container's attributes by applying the given function.
The function receives the current attributes map and must return an enumerable,
which is then converted into a new map.

 update(route_sock_or_conn, key, fun)

 @spec update(container(), key(), update_fun()) :: container()

Updates the value assigned to key in the container's attributes by applying the given function.

 Routex.Backend - Routex v1.2.2

Routex.Backend

use Routex.Backend
When used, this module generates a Routex backend module and a configuration struct
by running the configure/2 callbacks of the extensions provided in opts.
See also: Routex Extensions.

 Summary

 Types

 t()

 A Routex backend module

 Types

 t()

 @type t() :: module()

A Routex backend module

 Routex.Branching - Routex v1.2.2

Routex.Branching

 Provides a function to build branched variants of macro's

 Summary

 Functions

 branch_macro(patterns, match_binding, module, macro, opts \\ [])

 Takes a list of match patterns and creates the AST for branching variants for
all arities of macro in module by wrapping them in a case statement.

 Functions

 branch_macro(patterns, match_binding, module, macro, opts \\ [])

Takes a list of match patterns and creates the AST for branching variants for
all arities of macro in module by wrapping them in a case statement.
 Args
	patterns: the match patterns to be used as case clauses
	match_binding: ast inserted as case [match_binding] do
	module: the module name
	macro: the macro name
	opts: list of options

 Options
	arities: a list of arities to transform, default: all arities
	as: name of the branching variant. default: the macro name
	arg_post: function to calculate the replaced argument position. default: 0

The clauses and arguments can be transformed by providing MFA's. The
transformers receive as arguments the pattern, the banched arg and any
other argument provided in a.
	clause_transformer: {m,f,a}. transforms a pattern; used as case clause in the macro body.
	arg_transformer: {m,f,a}. transforms a branched argument; used in the macro body.

 Example
We want to create a branching variant of the url macro in Phoenix.VerifiedRoutes module. The original
macro generates code that simply prints the given path argument, but we want to it to write multiple clauses and
prefix the given argument based on the clause.
defmacro url(path, opts \ []) do -> quote do IO.puts(path) end
Given this code:
defmodule MyMod do
 def transform_arg(pattern, arg, extra), do: "/" <> extra <> "/europe/" <> pattern <> "/" <> arg end
end

patterns = ["en", "nl"]
match_binding = var!(external_var)
arg_pos = fn arity -> arity - 1 end)
arg_transformer = {MyMod, transform_arg, ["my_extra"]}
opts = [as: :url, orig: :url_original, arg_pos: arg_pos, arg_transformer: arg_transformer]

branch_macro(patterns, match_binding, OriginalModule, :url, opts)
A new macro is build which outputs the AST of the original macro, wrapped in a case clause given transformed arguments.
defmacro url(path, opts \ []) do
 quote do
 case external_var do
 "en" -> Original.Module.url("/" <> "my_extra" <> "/europe/en/" <> path, opts)
 "nl" -> Original.Module.url("/" <> "my_extra" <> "/europe/nl/" <> path, opts)
 end
 end
 end
For more examples, please see the test module Routex.BranchingTest.

 Routex.Dev - Routex v1.2.2

Routex.Dev

Provides functions to aid during development

 Summary

 Functions

 inspect_ast(ast, opts \\ [limit: :infinity, structs: false])

 Macro.escape/1 and IO.inspect/2 the given input. Options are
passed through to IO.inspect. Returns the input.

 print_ast(ast, env \\ __ENV__)

 Helper function to inspect AST as formatted code. Returns the
input.

 Functions

 inspect_ast(ast, opts \\ [limit: :infinity, structs: false])

 @spec inspect_ast(ast :: Macro.t(), list()) :: Macro.t()

Macro.escape/1 and IO.inspect/2 the given input. Options are
passed through to IO.inspect. Returns the input.

 print_ast(ast, env \\ __ENV__)

Helper function to inspect AST as formatted code. Returns the
input.

 Examples

iex> ast = quote do: Map.put(my_map, :key, value)
iex> print_ast(ast)
Map.put(my_map, :key, value)
...actual AST...

 Routex.Extension - Routex v1.2.2

Routex.Extension behaviour

Specification for composable Routex extensions.
All callbacks are optional
See also: Routex Extensions

 Summary

 Callbacks

 configure(opts, backend)

 The configure/2 callback is called in the first stage with the options
provided to Routex and the name of the Routex backend. It is expected to
return a new list of options.

 create_helpers(routes, backend, env)

 The create_helpers/3 callback is called in the last stage with a list of
routes belonging to a Routex backend, the name of the Routex backend and
the current environment. It is expected to return Elixir AST.

 post_transform(routes, backend, env)

 The post_transform/1 callback is called in the third stage with a list of
routes belonging to a Routex backend. It is expected to return a list of
Phoenix.Router.Route structs almost identical to the input, only adding
Routex.Attrs -for own usage- is allowed.

 transform(routes, backend, env)

 The transform/3 callback is called in the second stage with a list of
routes belonging to a Routex backend, the name of the configuration model
and the current environment. It is expected to return a list of
Phoenix.Router.Route structs with flattened Routex.Attrs.

 Callbacks

 configure(opts, backend)

 (optional)

 @callback configure(Routex.Types.opts(), Routex.Types.backend()) :: Routex.Types.opts()

The configure/2 callback is called in the first stage with the options
provided to Routex and the name of the Routex backend. It is expected to
return a new list of options.

 create_helpers(routes, backend, env)

 (optional)

 @callback create_helpers(
 Routex.Types.routes(),
 Routex.Types.backend(),
 Routex.Types.env()
) ::
 Routex.Types.ast()

The create_helpers/3 callback is called in the last stage with a list of
routes belonging to a Routex backend, the name of the Routex backend and
the current environment. It is expected to return Elixir AST.
The AST is included in MyAppWeb.Router.RoutexHelpers.

 post_transform(routes, backend, env)

 (optional)

 @callback post_transform(
 Routex.Types.routes(),
 Routex.Types.backend(),
 Routex.Types.env()
) ::
 Routex.Types.routes()

The post_transform/1 callback is called in the third stage with a list of
routes belonging to a Routex backend. It is expected to return a list of
Phoenix.Router.Route structs almost identical to the input, only adding
Routex.Attrs -for own usage- is allowed.

 transform(routes, backend, env)

 (optional)

 @callback transform(Routex.Types.routes(), Routex.Types.backend(), Routex.Types.env()) ::
 Routex.Types.routes()

The transform/3 callback is called in the second stage with a list of
routes belonging to a Routex backend, the name of the configuration model
and the current environment. It is expected to return a list of
Phoenix.Router.Route structs with flattened Routex.Attrs.

 Routex.HelperFallbacks - Routex v1.2.2

Routex.HelperFallbacks

Provides fallback functions when use'd

 Routex.Matchable - Routex v1.2.2

Routex.Matchable

Matchables are an essential part of Routex. They are used to match run time
routes with compile time routes and enable reordered route segments.
This module provides functions to create Matchables, convert them to match
pattern AST as well as function head AST, and check if the routing values
of two Matchable records match.

 Summary

 Types

 multi()

 t()

 Functions

 match?(record_1, record_2)

 Returns whether two Matchable records match on their route defining
properties. The first argument supports param en wildcard syntax
(e.g ":param" and "*").

 matchable(args \\ [])

 matchable(record, args)

 new(input)

 Converts a binary URL, Phoenix.Router.Route or (sigil) AST argument into a Matchable record.

 to_ast_segments(record)

 Takes a record and returns a list of ast, each element matching one segment.

 to_func(match_pattern, name, other_args \\ [], body)

 Creates a function named name which the first argument matching
a Matchable record pattern. Other arguments can be given with either a
catch all or a pattern.

 to_pattern(input, opts \\ [])

 Returns a match pattern for given Matchable record or Phoenix.Router.Route.
The pattern can be used either as function argument or in a function body. As
the pattern binds values, the bindings can be used to convert input from one
pattern to another.

 Types

 multi()

 @type multi() :: binary() | map() | list() | Routex.Types.ast() | Routex.Types.route()

 t()

 @type t() ::
 {:matchable, hosts :: list(), path :: list(), trailing_slash :: list(),
 query :: list(), fragment :: list()}

 Functions

 match?(record_1, record_2)

 @spec match?(multi() | t(), multi() | t()) :: boolean()

Returns whether two Matchable records match on their route defining
properties. The first argument supports param en wildcard syntax
(e.g ":param" and "*").

 Example

iex> route_record = %Phoenix.Router.Route{path: "/posts/:id"} |> Routex.Matchable.new()
iex> matching_record = "/posts/1/foo=bar#top" |> Routex.Matchable.new()
iex> non_matching_record = "/other/1/foo=bar#op" |> Routex.Matchable.new()

iex> match?(route_record, matching_record)
true

iex match?(route_record, non_matching_record)
false

 matchable(args \\ [])

 (macro)

 matchable(record, args)

 (macro)

 new(input)

 @spec new(input :: multi()) :: t()

Converts a binary URL, Phoenix.Router.Route or (sigil) AST argument into a Matchable record.

 Examples

 iex> path = "/posts/1?foo=bar#top"
 iex> route = %Phoenix.Router.Route{path: "/posts/:id"}
 iex> ast = {:<<>>, [], ["/products/", {:"::", [], [{{:., [], [Kernel, :to_string]}, [from_interpolation: true], [{:id, [], Elixir}]}, {:binary, [], Elixir}]}]}
iex> path_match = Routex.Matchable.new(path)
{:matchable, [nil], ["posts", "1"], "foo=bar", "top", false}

iex> route_match = Routex.Matchable.new(route)
{:matchable, [], ["posts", ":id"], nil, nil, false}

iex> ast_match = Routex.Matchable.new(ast)
{:matchable, [], ["posts", {:"::", [], [{{:., [], [Kernel, :to_string]}, [from_interpolation: true], [{:id, [], Elixir}]}, {:binary, [], Elixir}]}], nil, nil, false}

 to_ast_segments(record)

 @spec to_ast_segments(t()) :: [Routex.Types.ast()]

Takes a record and returns a list of ast, each element matching one segment.

 to_func(match_pattern, name, other_args \\ [], body)

 @spec to_func(pattern :: t(), name :: atom(), args :: keyword(), Routex.Types.ast()) ::
 Routex.Types.ast()

Creates a function named name which the first argument matching
a Matchable record pattern. Other arguments can be given with either a
catch all or a pattern.
The Matchable pattern is bound to variable pattern

 Example

iex> "/some/path"
 > |> Matchable.new()
 > |> Matchable.to_func(:my_func, [pattern_arg: "fixed", :catchall_arg], quote(do: :ok))

 to_pattern(input, opts \\ [])

Returns a match pattern for given Matchable record or Phoenix.Router.Route.
The pattern can be used either as function argument or in a function body. As
the pattern binds values, the bindings can be used to convert input from one
pattern to another.

 Examples

 iex> "/original/:arg1/:arg2" |> Routex.Matchable.new() |> Routex.Matchable.to_pattern()
{:{}, [], [:matchable, {:hosts, [], Routex.Matchable}, ["original", {:arg1, [], Routex.Matchable}, {:arg2, [], Routex.Matchable}], {:query, [], Routex.Matchable}, {:fragment, [], Routex.Matchable}, false]}

iex> "/recomposed/:arg2/:arg1" |> Routex.Matchable.new() |> Routex.Matchable.to_pattern()
{:{}, [], [:matchable, {:hosts, [], Routex.Matchable}, ["recomposed", {:arg2, [], Routex.Matchable}, {:arg1, [], Routex.Matchable}], {:query, [], Routex.Matchable}, {:fragment, [], Routex.Matchable}, false]}

iex> "/original/segment_1/segment_2" |> Routex.Matchable.new() |> Routex.Matchable.to_pattern()
{:{}, [], [:matchable, {:hosts, [], Routex.Matchable}, ["original", "segment_1", "segment_2"], {:query, [], Routex.Matchable}, {:fragment, [], Routex.Matchable}, false]}

 Routex.Processing - Routex v1.2.2

Routex.Processing

This module provides everything needed to process Phoenix routes. It executes
the transform callbacks from extensions to transform Phoenix.Router.Route
structs and create_helpers callbacks to create one unified Helper module.
Powerful but thin
Although Routex is able to influence the routes in Phoenix applications in profound
ways, the framework and its extensions are a surprisingly lightweight piece
of compile-time middleware. This is made possible by the way router modules
are pre-processed by Phoenix.Router itself.
Prior to compilation of a router module, Phoenix Router registers all routes
defined in the router module using the attribute @phoenix_routes. Each
route is at that stage a Phoenix.Router.Route struct.
Any route enclosed in a preprocess_using block has received a :private
field in which Routex has put which Routex backend to use for that
particular route. By enumerating the routes, we can process each route using
the properties of this configuration and set struct values accordingly. This
processing is nothing more than (re)mapping the Route structs' values.
After the processing by Routex is finished, the @phoenix_routes attribute
in the router is erased and re-populated with the list of mapped
Phoenix.Router.Route structs.
Once the router module enters the compilation stage, Routex is already out of
the picture and route code generation is performed by Phoenix Router.

 Summary

 Types

 extension_module()

 helper_module()

 Functions

 __before_compile__(env)

 Callback executed before compilation of a Phoenix Router. This callback is added
to the @before_compile callbacks by Routex.Router.

 add_callbacks_map(routes_per_backend)

 execute_callback(callback, backend, extension_module, args)

 Executes the specified callback for an extension and returns the result.

 execute_callbacks(env)

 The main function of this module. Receives as only argument the environment of a
Phoenix router module.

 execute_callbacks(env, routes)

 transform_routes_per_backend(backend_routes_callbacks, env)

 Types

 extension_module()

 @type extension_module() :: module()

 helper_module()

 @type helper_module() :: module()

 Functions

 __before_compile__(env)

 @spec __before_compile__(Routex.Types.env()) :: :ok

Callback executed before compilation of a Phoenix Router. This callback is added
to the @before_compile callbacks by Routex.Router.

 add_callbacks_map(routes_per_backend)

 execute_callback(callback, backend, extension_module, args)

Executes the specified callback for an extension and returns the result.

 execute_callbacks(env)

 @spec execute_callbacks(Routex.Types.env()) :: :ok

The main function of this module. Receives as only argument the environment of a
Phoenix router module.

 execute_callbacks(env, routes)

 @spec execute_callbacks(Routex.Types.env(), Routex.Types.routes()) :: :ok

 transform_routes_per_backend(backend_routes_callbacks, env)

 Routex.Route - Routex v1.2.2

Routex.Route

Function for working with Routex augmented Phoenix Routes

 Summary

 Functions

 exprs(route, env)

 Compatibility wrapper around Phoenix.Router.Route.exprs

 get_backends(routes)

 Returns a list of unique backends

 get_nesting(route, offset \\ 0)

 Returns the nesting level of an (ancestor) route. By default
the parent. This can be adjusted by providing an negative depth offset.

 group_by_method_and_origin(routes)

 Returns routes grouped by the combination of method and origin path

 group_by_method_and_path(routes, offset \\ 0)

 group_by_nesting(routes, offset \\ 0)

 Returns routes grouped by nesting level of an (ancestor) route. By default
groups by parent. This can be adjusted by providing an negative depth offset

 Functions

 exprs(route, env)

 @spec exprs(Routex.Types.route(), Routex.Types.env()) :: map()

Compatibility wrapper around Phoenix.Router.Route.exprs

 get_backends(routes)

 @spec get_backends(Routex.Types.routes()) :: [Routex.Types.backend()]

Returns a list of unique backends

 get_nesting(route, offset \\ 0)

 @spec get_nesting(Routex.Types.route(), integer()) :: [integer()]

Returns the nesting level of an (ancestor) route. By default
the parent. This can be adjusted by providing an negative depth offset.

 group_by_method_and_origin(routes)

Returns routes grouped by the combination of method and origin path

 group_by_method_and_path(routes, offset \\ 0)

 @spec group_by_method_and_path(Routex.Types.routes(), integer()) :: %{
 required({atom(), binary()}) => Routex.Types.routes()
}

 group_by_nesting(routes, offset \\ 0)

 @spec group_by_nesting(Routex.Types.routes(), integer()) :: %{
 required([integer()]) => Routex.Types.routes()
}

Returns routes grouped by nesting level of an (ancestor) route. By default
groups by parent. This can be adjusted by providing an negative depth offset

 Routex.Router - Routex v1.2.2

Routex.Router

Provides macro (callbacks) to alter route definition before
compilation.
use Routex.Router
When you use Routex.Router, the Routex.Router module will
plug Routex.Processing between the definition of routes and the
compilation of the router module. It also imports the preprocess_using
macro which can be used to mark routes for Routex preprocessing using the
Routex backend provided as first argument.

 Summary

 Functions

 preprocess_using(backend, opts \\ [], list)

 Wraps each enclosed route in a scope, marking it for processing by Routex
using given backend. opts can be used to partially override the given
configuration.

 Functions

 preprocess_using(backend, opts \\ [], list)

 (macro)

 @spec preprocess_using(Routex.Types.backend(), Routex.Types.opts(), [
 {:do, Routex.Types.ast()}
]) ::
 Routex.Types.ast()

Wraps each enclosed route in a scope, marking it for processing by Routex
using given backend. opts can be used to partially override the given
configuration.
Replaces interpolation syntax with a string for macro free processing by
extensions. Format: [rtx.{binding}].

 Routex.Types - Routex v1.2.2

Routex.Types

Types shared by Routex core and extensions.

 Summary

 Types

 ast()

 attrs()

 backend()

 config()

 env()

 opts()

 route()

 routes()

 Types

 ast()

 @type ast() :: Macro.t() | [Macro.t()]

 attrs()

 @type attrs() :: Routex.Attrs.t()

 backend()

 @type backend() :: Routex.Backend.t()

 config()

 @type config() :: keyword()

 env()

 @type env() :: Macro.Env.t()

 opts()

 @type opts() :: keyword()

 route()

 @type route() :: Phoenix.Router.Route.t()

 routes()

 @type routes() :: [Phoenix.Router.Route.t()]

 Routex.Utils - Routex v1.2.2

Routex.Utils

Provides an interface to functions which can be used in extensions.

 Summary

 Functions

 alert(title \\ "Critical", input)

 Prints an alert. Should be used when printing critical alerts in
the terminal during compile time.

 assign_module()

 Returns the module to use for LiveView assignments

 ensure_compiled!(mod)

 Backward compatible version of Code.ensure_compiled!/1

 get_attribute(module, key, default \\ nil)

 Test env aware variant of Module.get_attribute. Delegates to
Module.get_attribute/3 in non-test environments. In test environment it
returns the result of Module.get_attribute/3 or an empty list when the
module is already compiled.

 get_branch(arg1)

 get_helper_ast(caller)

 Returns the AST to get the current branch from process dict or from assigns, conn or socket
based on the available variables in the caller module.

 print(module \\ nil, input)

 Prints an indented text. Should be used when printing messages in
the terminal during compile time.

 Functions

 alert(title \\ "Critical", input)

Prints an alert. Should be used when printing critical alerts in
the terminal during compile time.

 assign_module()

 @spec assign_module() :: module()

Returns the module to use for LiveView assignments

 ensure_compiled!(mod)

 @spec ensure_compiled!(module()) :: module()

Backward compatible version of Code.ensure_compiled!/1

 get_attribute(module, key, default \\ nil)

Test env aware variant of Module.get_attribute. Delegates to
Module.get_attribute/3 in non-test environments. In test environment it
returns the result of Module.get_attribute/3 or an empty list when the
module is already compiled.

 get_branch(arg1)

 @spec get_branch(Routex.Types.route() | map() | Plug.Conn.t() | Phoenix.Socket.t()) ::
 integer()

 get_helper_ast(caller)

 @spec get_helper_ast(caller :: Routex.Types.env()) :: Routex.Types.ast()

Returns the AST to get the current branch from process dict or from assigns, conn or socket
based on the available variables in the caller module.

 print(module \\ nil, input)

 @spec print(module(), input :: iodata()) :: :ok

Prints an indented text. Should be used when printing messages in
the terminal during compile time.

 Routex.Extension.AlternativeGetters - Routex v1.2.2

Routex.Extension.AlternativeGetters

Creates helper functions to get a list of maps alternative slugs and their Routex.Attrs
by providing a binary url. Sets match?: true for the url matching record.

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
 Routex.Extension.Alternatives,
+ Routex.Extension.AlternativeGetters
],

 Usage example

<!-- @url is made available by Routex -->
<!-- alternatives/1 is located in ExampleWeb.Router.RoutexHelpers aliased as Routes -->
<.link
 :for={alternative <- Routes.alternatives(@url)}
 class="button"
 rel="alternate"
 hreflang={alternative.attrs.locale}
 patch={alternative.slug}
 >
 <.button class={(alternative.match? && "highlighted") || ""}>
 <%= alternative.attrs.display_name %>
 </.button>
 </.link>

 Pseudo result

iex> ExampleWeb.Router.RoutexHelpers.alternatives("/products/12?foo=baz")
[%Routex.Extension.AlternativeGetters{
 slug: "products/12/?foo=baz",
 match?: true,
 attrs: %{
 __branch__: [0, 12, 0],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
 %Routex.Extension.AlternativeGetters{
 slug: "/europe/products/12/?foo=baz",
 match?: false,
 attrs: %{
 __branch__: [0, 12, 1],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
 %Routex.Extension.AlternativeGetters{
 slug: "/asia/products/12/?foo=baz",
 match?: false,
 attrs: %{
 __branch__: [0, 12, 1],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
]

 Routex.Attrs

Requires
	none

Sets
	none

 Helpers

	alternatives(url :: String.t()) :: struct()

 Summary

 Functions

 build_case_clauses(routes)

 Functions

 build_case_clauses(routes)

 Routex.Extension.Alternatives - Routex v1.2.2

Routex.Extension.Alternatives

Creates alternative routes based on branches configured in a Routex backend
module. Branches can be nested and each branch can provide Routex.Attrs to be shared
with other extensions.
In combination with...
How to combine this extension for localization is written in de Localization Guide

 Configuration

file /lib/example_web/routex_backend.ex
This example uses a `Struct` for custom attributes, so there is no attribute inheritance;
only struct defaults. When using maps, nested branches will inherit attributes from their parent.

+ defmodule ExampleWeb.RoutexBackend.AltAttrs do
+ @moduledoc false
+ defstruct [:contact, locale: "en"]
+ end

defmodule ExampleWeb.RoutexBackend do
+ alias ExampleWeb.RoutexBackend.AltAttrs

use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Alternatives,
Routex.Extension.AttrGetters
],
+ alternatives: %{
+ "/" => %{
+ attrs: %AltAttrs{contact: "root@example.com"},
+ branches: %{
+ "/europe" => %{
+ attrs: %AltAttrs{contact: "europe@example.com"},
+ branches: %{
+ "/nl" => %{attrs: %AltAttrs{locale: "nl", contact: "verkoop@example.nl"}},
+ "/be" => %{attrs: %AltAttrs{locale: "nl", contact: "handel@example.be"}}
+ }
+ },
+ "/gb" => %{attrs: %AltAttrs{contact: "sales@example.com"}
+ }
+ },
+ alternatives_prefix: false # whether to automatically prefix routes, defaults to true

 Pseudo result

 Router Generated Attributes
 ⇒ /products/:id/edit locale: "en", contact: "rootexample.com"
 /products/:id/edit ⇒ /europe/nl/products/:id/edit locale: "nl", contact: "verkoop@example.nl"
 ⇒ /europe/be/products/:id/edit locale: "nl", contact: "handel@example.be"
 ⇒ /gb/products/:id/edit locale: "en", contact: "sales@example.com"

 Routex.Attrs

Requires
	none

Sets
	any key/value in :attrs
	branch_helper
	branch_alias
	branch_prefix
	branch_opts
	alternatives (list of Phoenix.Route.Route)

 Routex.Extension.Assigns - Routex v1.2.2

Routex.Extension.Assigns

Extracts Routex.Attrs from a route and makes them available in components
and controllers with the assigns operator @ (optionally under a namespace).
In combination with...
Other extensions set Routex.Attrs. The attributes an extension sets is listed in it's documentation.
To define custom attributes for routes have a look at Routex.Extension.Alternatives

 Options

	namespace: when set creates a named collection: assigns available as @namespace.key
	attrs: If attrs is not set, all Routex.Attrs are included. If attrs is set
to a list of keys, only the specified subset of attributes will be
available.

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Assigns
],
+ assigns: %{namespace: :rtx, attrs: [:branch_helper, :locale, :contact, :name]}

 Pseudo result

in (h)eex template
@rtx.branch_helper ⇒ "eu_nl"
@rtx.locale ⇒ "nl"
@rtx.contact ⇒ "verkoop@example.nl"
@rtx.name ⇒ "The Netherlands"

 Routex.Attrs

Requires
	none

Sets
	assigns

 Example use case

Combine with Routex.Extension.Alternatives to make compile time, branch
bound assigns available to components and controllers.

 Summary

 Functions

 handle_params(params, uri, socket)

 Hook attached to the handle_params stage in the LiveView life cycle

 Functions

 handle_params(params, uri, socket)

Hook attached to the handle_params stage in the LiveView life cycle

 Routex.Extension.AttrGetters - Routex v1.2.2

Routex.Extension.AttrGetters

Access route attributes at runtime within your controllers, plugs, or LiveViews
based on the matched route's properties. Uses pattern matching for optimal
performance during runtime.
This extension provides the required attrs/1 helper function, used by
Routex to assign helper attributes in the generated on_mount/4 callback.
In combination with...
Other extensions set Routex.Attrs. The attributes an extension sets is listed in it's documentation.
To define custom attributes for routes have a look at Routex.Extension.Alternatives

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
+ Routex.Extension.AttrGetters, # required
],

 Pseudo result

iex> ExampleWeb.Router.RoutexHelpers.attrs("/europe/nl/producten/?foo=baz")
%{
 __branch__: [0, 9, 3],
 __origin__: "/products",
 backend: ExampleWeb.LocalizedRoutes,
 contact: "verkoop@example.nl",
 locale: "nl",
 branch_name: "The Netherlands",
 branch_helper: "europe_nl",
}

 Routex.Attrs

Requires
	none

Sets
	none

 Helpers

	attrs(url :: binary) :: map()

 Routex.Extension.Cldr - Routex v1.2.2

Routex.Extension.Cldr

Adapter for projects using :ex_cldr. It generates configuration for locale routes
based on your existing Cldr setup for a seamless experience.
Have a look at....
This adapter was developed before Routex.Extension.Localize.Phoenix -a
powerful localization extension which automatically integrates with your existing Cldr-setup.
You might also be interested in our guide Localize Phoenix.

 Interpolating Locale Data

Interpolation is provided by Routex.Extension.Interpolation, which
is able to use any Routex.Attr for interpolation into your routes.
See it's documentation for additional options.
When using this Cldr extension, the following interpolations are supported as they
are set as Routex.Attr:
	locale will interpolate the Cldr locale name
	locale_display will interpolate the Cldr locale display name
	language will interpolate the Cldr language name
	territory will interpolate the Cldr territory code

Some examples:
preprocess_using ExampleWeb.RoutexBackend do
 scope "/#{territory}/territory/" do
 get "/locale/pages/:page/#{locale}/", PageController, :show
 get "/language/#{language}/pages/:page", PageController, :show
 end
end

 Configuration

Ejecting the CLDR extension
Using the Cldr adapter provides the advantage of keeping your localized routes
in sync with the configuration of Cldr. The disadvantage is a lack of flexibility.
If you ever need more flexibility, you can eject the Cldr extension.
defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [
 # required
 Routex.Extension.AttrGetters,

 # adviced
 Routex.Extension.AlternativeGetters,
 Routex.Extension.Assigns,

 # the adapter with dependency
 Routex.Extension.Cldr,
 Routex.Extension.Alternatives,

 # replacements for cldr-routes
 Routex.Extension.VerifiedRoutes,
 Routex.Extension.Interpolation, # when using routes with interpolation
 Routex.Extension.Translations, # when using translated routes

 # replacements for cldr-plugs
 Routex.Extension.LiveViewHooks,
 Routex.Extension.Plugs,
 Routex.Extension.Localize.Phoenix.Runtime,

 # control Cldr locale at runtime
 Routex.Extension.RuntimeDispatcher,
],
+ cldr_backend: MyApp.Cldr,
+ translations_backend: MyApp.Gettext, # when using translated routes
+ translations_domain: "routes", # when using translated routes
+ alternatives_prefix: false, # when using routes with interpolation
+ verified_sigil_routex: "~q", # consider using ~p, see `Routex.Extension.VerifiedRoutes`
+ dispatch_targets: [
+ # Set CLDR locale from :locale attribute
+ {Cldr, :put_locale, [MyApp.Cldr, [:attrs, :locale]]}
+]
end
defmodule ExampleWeb.Router
require your Cldr backend module before `use`ing the router.
+ require ExampleWeb.Cldr

use ExampleWeb, :router

import ExampleWeb.UserAuth
When your application does not compile after adding this extension, force a
recompile using mix compile --force.

 Pseudo result

 This extension injects :alternatives into your configuration.
 See the documentation of Routex.Extension.Alternatives to see
 more options and the pseudo result.

 Eject the Cldr adapter

This extension abstracts away the configuration of Routex.Extension.Alternatives. You may want
to customize things beyond what Routex.Extension.Cldr provides. When you eject, you copy
the generated configuration into the Routex backend.
In other words, instead of relying on the preconfigured “black box” provided by this extension, you
now have full access to—and responsibility for—the configuration of Routex.Extension.Alternatives.
Copy the generated configuration into your Routex backend**
Call the config/0 function on you backend (e.g. ExampleWeb.RoutexBackend.config())
in IEX. Copy the alternatives: %{...} section to your Routex backend.
defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [...],
+ alternatives: %{...}
Remove references to Cldr
defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [
- Routex.Extension.Cldr,
],
- cldr_backend: MyApp.Cldr,
defmodule ExampleWeb.Router
- require ExampleWeb.Cldr

use ExampleWeb, :router

import ExampleWeb.UserAuth

 Routex.Attrs

Requires
	none

Sets
	language
	locale
	locale_display
	territory

 Summary

 Functions

 configure(config, backend)

 Callback implementation for Routex.Extension.configure/2.

 Functions

 configure(config, backend)

 @spec configure(Routex.Types.opts(), Routex.Types.backend()) :: Routex.Types.opts()

Callback implementation for Routex.Extension.configure/2.

 Routex.Extension.Cloak - Routex v1.2.2

Routex.Extension.Cloak

Transforms routes to be unrecognizable.
Warning
This extension is intended for testing and demonstration. It may change at
any given moment to generate other routes without prior notice.
The Cloak extension demonstrates how Routex enables extensions to transform
routes beyond recognition without breaking Phoenix' native and Routex' routing
features.
Currently it numbers all routes. Starting at 1 and incremening the counter for
each route. It also shifts the parameter to the left; causing a chaotic route
structure.
Do note: this still works with the Verified Routes extension. You can use the
original, non transformed, routes in templates (e.g. ~p"/products/%{product}")
and still be sure the transformed routes rendered at runtime (e.g. /88/2 when product.id = 88)
are valid routes.

 Do (not) try this at home

	Try this extension with a route generating extension like
Routex.Extension.Alternatives for even more chaos.

	Adapt this extension to use character repetition instead of numbers. Can you
guess where /90/** leads to?

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Cloak
],

 Pseudo result

Original Rewritten Result (product_id: 88, 89, 90)
/products ⇒ /1 ⇒ /1
/products/:id/edit ⇒ /:id/2 ⇒ /88/2, /89/2, /90/2 etc...
/products/:id/show/edit ⇒ /:id/3 ⇒ /88/3, /89/3, /90/3 etc...

 Routex.Attrs

Requires
	none

Sets
	none

 Routex.Extension.Interpolation - Routex v1.2.2

Routex.Extension.Interpolation

A route may be defined with a routes Routex.Attrs interpolated
into it. These interpolations are specified using the usual #{variable}
interpolation syntax. Unlike some other routing solutions, interpolation
is not restricted to the beginning of routes.
In combination with...
Other extensions set Routex.Attrs. The attributes an extension sets is listed in it's documentation.
To define custom attributes for routes have a look at Routex.Extension.Alternatives
When using Routex.Extension.Alternatives you might
want to disable auto prefixing for the whole Routex backend (see
Routex.Extension.Alternatives) or per route (see Routex).
Bare base route
The route as specified in the Router will be stripped from any
interpolation syntax. This allows you to use routes without interpolation
syntax in your templates (e.g. ~p"/products") and have them verified by
Verified Routes. The routes will be rendered with interpolated attributes
at run time.

 Configuration

none

 Usage

file /lib/example_web/routes.ex
live "/products/#{locale}/:id", ProductLive.Index, :index

 Pseudo result

 # in combination with Routex.Extension.Alternatives with auto prefix
 # disabled and 3 branches. It splits the routes and sets the :locale
 # attribute which is used for interpolation.

 Route Generated
 ⇒ /products/en/:id
 /products/#{locale}/:id/ ⇒ /products/fr/:id
 ⇒ /products/fr/:id
Routex.Attrs
Requires
- none
Sets
- none

 Routex.Extension.LiveViewHooks - Routex v1.2.2

Routex.Extension.LiveViewHooks

Attach LiveView hooks provided by Routex extensions.
This extension generates quoted functions to inject into LiveView's
lifecycle stages. The hooks are built from a set of supported lifecycle
callbacks provided by extensions.
The arguments given to these callbacks adhere to the official
specifications.

 Summary

 Functions

 configure(opts, backend)

 Detect supported lifecycle callbacks in extensions and adds
them to opts[:hooks].

 create_helpers(routes, backend, env)

 Generates Routex' LiveView on_mount/4 hook, which inlines the lifecycle
stage hooks provided by other extensions.

 Functions

 configure(opts, backend)

 @spec configure(Routex.Types.opts(), Routex.Types.backend()) :: Routex.Types.opts()

Detect supported lifecycle callbacks in extensions and adds
them to opts[:hooks].
Detects and registers supported lifecycle callbacks from other extensions.
Returns an updated keyword list with the valid callbacks accumulated
under the :hooks key.
Supported callbacks:
[handle_params: [:params, :uri, :socket], handle_event: [:event, :params, :socket], handle_info: [:msg, :socket], handle_async: [:name, :async_fun_result, :socket]]

 create_helpers(routes, backend, env)

 @spec create_helpers(
 Routex.Types.routes(),
 Routex.Types.backend(),
 Routex.Types.env()
) ::
 Routex.Types.ast()

Generates Routex' LiveView on_mount/4 hook, which inlines the lifecycle
stage hooks provided by other extensions.
Returns on_mount/4 and an initial handle_params/3.

 Routex.Extension.Localize.Phoenix - Routex v1.2.2

Routex.Extension.Localize.Phoenix

Localize your Phoenix with minimal configuration.
Add Routex.Extension.Localize.Phoenix.Routes
and Routex.Extension.Localize.Phoenix.Runtime to
the list of extensions.
For configuration options and additional details, refer to their
documentation.

 Routex.Extension.Localize.Phoenix.Routes - Routex v1.2.2

Routex.Extension.Localize.Phoenix.Routes

Localize Phoenix routes using simple configuration.
At compile time, this extension generates localized routes based on locale
tags. These locale tags are automatically derived from your Cldr, Gettext or
Fluent setup and can be overriden using the extensions options.
When using a custom configuration, tags are validated using a
build-in locale registry
based on the authoritive
IANA Language Subtag Registry.

 Automated locale expansion

At compile time this extension will expand a routes :locale attribute into
multiple locale attributes using the build-in registry:
	:locale (e.g., "en-US")
	:language (e.g., "en")
	:region (e.g., "US")
	:language_display_name (e.g., "English")
	:region_display_name (e.g., "United States")

 Options

	locales: A list of locale definitions. Defaults to known locales
 by Cldr, Gettext or Fluent (in that order).
 Each entry can be:
	A locale tag (e.g., "en", "fr-CA").
	A keyword tuple locale: attrs with attributes map for that specific locale branch.

 Example:
 locales: [
 # Standard English
 "en",
 # Standard French
 "fr"
 # Language: "English", Region: "Global" displayed as "Worldwide"
 "en-001": %{region_display_name: "Worldwide"},
 # Language: "English", Region: "Great Brittain", Compile time route attributes: %{currency: "GBP"}
 "en-GB": %{currency: "GBP"},
]
Attribute Merging Precedence (Compile Time, low to high):
	Derived from locale string
	Explicit Locale Override (from attrs in tuple)
	Original Branch Attribute (already existing on the branch)

Point 3 ensures this extension plays well with
pre-configured alternative branches.

	default_locale: The locale for top-level routes (e.g., /products).
 Default to the default locale of Cldr, Gettext or Fluent (in that order) with
 fallback to "en".

	locale_backend: Backend to use for Cldr, Gettext or Fluent. Defaults to their
 own backend module name convensions.

	locale_prefix_sources: Single atom or list of locale attributes to prefix
 routes with. Will use the first (sub)tag which returns a non-nil value.
 When no value is found the locale won't have localized routes.
 Possible values: :locale, :region, :language, :language_display_name, :region_display_name.
 Default to: [:language, :region, :locale].
 Examples:
 # in configuration
 locales: ["en-001", "fr", "nl-NL", "nl-BE"]
 default_locale: "en"

 # single source
 locale_prefix_sources: :locale => ["/", "/en-001", "/fr", "/nl/nl", "/nl-be"],
 locale_prefix_sources: :language => ["/", "/fr", "/nl"],
 locale_prefix_sources: :region => ["/", "/001", "/nl", "/be"]
 locale_prefix_sources: :language_display_name => ["/", "/english", "/french", "/dutch"]
 locale_prefix_sources: :region_display_name => ["/", "/world", "/france", "/netherlands", "/belgium"]

 # with fallback
 locale_prefix_sources: [:language, :region] => ["/", "/fr", "/nl"]
 locale_prefix_sources: [:region, :language] => ["/", "/001", "/fr", "/nl", "/be"]

 Configuration examples

Together with...
This extension generates configuration for alternative route branches under the :alternatives key.
To convert these into routes, Routex.Extension.Alternatives is automatically enabled.

Integration:
This extension sets runtime attributes (Routex.Attrs).
To use these attributes in libraries such as Gettext and Cldr, see
Routex.Extension.RuntimeDispatcher.

Simple Backend Configuration
This extensions ships with sane default for the most common
use cases. As a result configuration is only used for overrides.
Example:
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.Attrs,
 Routex.Extension.Localize.Phoenix.Routes,
 Routex.Extension.RuntimeDispatcher # Optional: for state depending package integration
],
 # This option is shared with the Translations extension
 :translations_backend: ExampleWeb.Gettext,
 # RuntimeDispatcher options
 dispatch_targets: [
 {Gettext, :put_locale, [[:attrs, :language]]},
 # {Cldr, :put_locale, [[:attrs, :locale]]}
]
end
Advanced Backend Configuration
Due to a fair amount of powerful options, you can tailor the localization to
custom requirements.
Example:
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.Attrs,
 # Enable Localize for localized routes
 Routex.Extension.Localize.Phoenix.Routes,
 Routex.Extension.RuntimeDispatcher
],
 # Compile-time options for Localize.Beta
 locales: ["en", "fr", {"nl", %{region_display_name: "Nederland"}}],
 default_locale: "en",
 locale_prefix_sources: [:language],

 # Runtime detection overrides for Localize.Beta
 locale_sources: [:query, :session, :accept_language, :attrs],
 locale_params: ["locale", "lang"],
 language_sources: [:path, :attrs],
 language_params: ["lang"],

 # Runtime dispatch targets used by RuntimeDispatcher
 dispatch_targets: [
 {Gettext, :put_locale, [[:attrs, :language]]},
 {Cldr, :put_locale, [[:attrs, :locale]]}
]
end

 Summary

 Types

 attributes()

 locale()

 locale_attribute_key()

 locale_attribute_keys()

 locale_attributes()

 locale_definition()

 prefix_source()

 prefix_sources()

 Types

 attributes()

 @type attributes() :: %{optional(atom()) => any()}

 locale()

 @type locale() :: String.t()

 locale_attribute_key()

 @type locale_attribute_key() :: locale_attribute_keys() | atom()

 locale_attribute_keys()

 @type locale_attribute_keys() ::
 :locale | :language | :region | :language_display_name | :region_display_name

 locale_attributes()

 @type locale_attributes() :: %{optional(locale_attribute_key()) => any()}

 locale_definition()

 @type locale_definition() :: locale() | {locale(), locale_attributes()}

 prefix_source()

 @type prefix_source() ::
 :locale | :region | :language | :language_display_name | :region_display_name

 prefix_sources()

 @type prefix_sources() :: prefix_source() | [prefix_source()]

 Routex.Extension.Localize.Phoenix.Runtime - Routex v1.2.2

Routex.Extension.Localize.Phoenix.Runtime

This extension provides:
	A Plug (plug/3) to update the connection with locale attributes and store them
in the session. Enabled via Routex.Extension.Plugs.
	A LiveView lifecycle hook (handle_params/4) to update the socket with
locale-related attributes. Enabled via Routex.Extension.LiveViewHooks.

Both are optimized for performance.
Locale values can be sourced independently from locations like:
	Pre-compiled route attributes
	The Accept-Language header sent by the client (fr-CH, fr;q=0.9, en;q=0.8, de;q=0.7)
	Query parameters (?lang=fr)
	Hostname (fr.example.com)
	Path parameters (/fr/products)
	Assigns (assign(socket, [locale: "fr"]))
	Body parameters
	Stored cookie
	Session data

Runtime detection is configured by specifying sources for locale attributes
(:locale, :language, :region).
Locale Attributes and Their Sources
Each attribute (:locale, :language, :region) can have its own list of
sources and parameter names, where the parameter name is the key to get from
the source. The parameter should be provided as a string.
Supported Sources
	:accept_language: From the header sent by the client (e.g. fr-CH, fr;q=0.9, en;q=0.8, de;q=0.7)
	:assigns: From conn and socket assigns.
	:route: From precompiled route attributes.
	:body: From request body parameters.
	:cookie: From request cookies.
	:host: From the hostname (e.g., en.example.com).
	:path: From path parameters (e.g., /:lang/users).
	:query: From query parameters (e.g., ?locale=de).
	:session: From session data.

Default Configuration
The default sources for each attribute are:
[:query, :session, :cookie, :accept_language, :path, :assigns, :route].
Overriding Detection Behavior
You can customize sources and parameters per attribute:
Examples:
In your Routex backend module
locale_sources: [:query, :session, :accept_language], # Order matters
locale_params: ["locale"], # Look for ?locale=... etc

language_sources: [:path, :host],
language_params: ["lang"], # Look for /:lang/... etc

region_sources: [:route] # Only use region from precompiled route attributes
region_params defaults to ["region"]

 Summary

 Types

 conn()

 params()

 plug_opts()

 socket()

 url()

 Functions

 call(conn, plug_opts)

 Plug callback to detect and assign locale attributes to the connection.

 configure(config, backend)

 Checks for invalid sources

 handle_params(params, url, socket)

 LiveView handle_params/4 callback hook.

 Types

 conn()

 @type conn() :: Plug.Conn.t()

 params()

 @type params() :: %{optional(String.t()) => any()}

 plug_opts()

 @type plug_opts() :: keyword()

 socket()

 @type socket() :: Phoenix.LiveView.Socket.t()

 url()

 @type url() :: String.t()

 Functions

 call(conn, plug_opts)

 @spec call(conn(), plug_opts()) :: conn()

Plug callback to detect and assign locale attributes to the connection.
Examines configured sources (params, session, headers, etc.), updates
conn.assigns, merges attributes into conn.private.routex.attrs, and
persists relevant attributes in the session.

 configure(config, backend)

 @spec configure(Routex.Types.opts(), Routex.Types.backend()) :: Routex.Types.opts()

Checks for invalid sources

 handle_params(params, url, socket)

 @spec handle_params(params(), url(), socket()) :: {:cont, socket()}

LiveView handle_params/4 callback hook.
Detects locale settings based on URL, params, and socket state, then updates
the socket assigns and Routex attributes.

 Routex.Extension.Plugs - Routex v1.2.2

Routex.Extension.Plugs

Provides integration for plugs defined by Routex extensions.
Detect extensions that implement supported plug callbacks. The valid plug
callbacks are then collected and attached to the options under the :plugs
key. Additionally, the module generates a Routex Plug hook that inlines the
plugs provided by these extensions so that they are invoked in a single plug
chain.

 Summary

 Functions

 configure(opts, backend)

 Detects and registers supported plug callbacks from other extensions.
Returns an updated keyword list with the valid plug callbacks accumulated
under the :plugs key.

 create_helpers(routes, backend, env)

 Generates a plug hook for Routex that inlines plugs provided by other extensions.

 Functions

 configure(opts, backend)

 @spec configure(Routex.Types.opts(), Routex.Types.backend()) :: Routex.Types.opts()

Detects and registers supported plug callbacks from other extensions.
Returns an updated keyword list with the valid plug callbacks accumulated
under the :plugs key.
Supported callbacks:
	call/2: Plug.Conn.call/2

 create_helpers(routes, backend, env)

 @spec create_helpers(
 Routex.Types.routes(),
 Routex.Types.backend(),
 Routex.Types.env()
) ::
 Routex.Types.ast()

Generates a plug hook for Routex that inlines plugs provided by other extensions.
This helper function creates quoted expressions defining a plug function that
encapsulates all the plug callbacks registered by Routex extension backends.

 Routex.Extension.RouteHelpers - Routex v1.2.2

Routex.Extension.RouteHelpers

This module provides route helpers that support the automatic selection of
alternative routes. These helpers can serve as drop-in replacements for
Phoenix's default route helpers.
Use this extension only if your application leverages extensions that
generate alternative routes. Otherwise, the result will be identical to the
official helpers provided by Phoenix.

 Configuration

In versions of Phoenix prior to 1.7, an alias Routes was created by
default. You can either replace this alias or add an alias for
RoutexHelpers. Note that Phoenix 1.7 and later have deprecated these
helpers in favor of Verified Routes.
In the example below, we override the default Routes alias to use Routex's
Route Helpers as a drop-in replacement, while keeping the original helper
functions available under the alias OriginalRoutes:
file /lib/example_web.ex
defp routex_helpers do
+ alias ExampleWeb.Router.Helpers, as: OriginalRoutes
+ alias ExampleWeb.Router.RoutexHelpers, as: Routes
end

 Pseudo Result

When alternative routes are created, auto-selection is used to keep the user
within a specific branch.

 Example in a (h)eex template:

Product #1

 Result after compilation:

case alternative do
 nil ⇒ "/products/#{product}"
 "en" ⇒ "/products/#{product}"
 "nl" ⇒ "/europe/nl/products/#{product}"
 "be" ⇒ "/europe/be/products/#{product}"
end

 Routex.Attrs

Requires:
	None

Sets:
	None

 Summary

 Types

 helper_module()

 Functions

 create_helpers(routes, backend, env)

 Creates the route helpers for the given routes if the :phoenix_helpers
attribute is set.

 Types

 helper_module()

 @type helper_module() :: module()

 Functions

 create_helpers(routes, backend, env)

 @spec create_helpers(
 Routex.Types.routes(),
 Routex.Types.backend(),
 Routex.Types.env()
) ::
 Routex.Types.ast()

Creates the route helpers for the given routes if the :phoenix_helpers
attribute is set.

 Parameters

	routes: The list of routes to create helpers for.
	backend: The backend module (not used).
	env: The macro environment.

 Returns

A list of quoted expressions representing the generated helpers.

 Routex.Extension.RuntimeDispatcher - Routex v1.2.2

Routex.Extension.RuntimeDispatcher

The Routex.Extension.RuntimeDispatcher enables the dynamic dispatching of
functions to external libraries or modules during the Plug pipeline and
LiveView's handle_params. This dispatching is configured using a list of
{module, function, arguments} tuples and leverages attributes from
Routex.Attrs at runtime.
This is particularly useful for integrating with libraries that handle
internationalization or localization, such as:
	Gettext - Set language for translations
	Fluent - Set language for translations
	Cldr - Set locale for the Cldr suite

In combination with...
This extension dispatches functions with values from Routex.Attrs during
runtime. These attributes are typically set by other extensions such as:
	Routex.Extension.Alternatives (compile time)
	Routex.Extension.Localize.Phoenix (compile time and runtime)
	Routex.Extension.Localize.Phoenix.Routes (compile time)
	Routex.Extension.Localize.Phoenix.Runtime (runtime)

 Options

	dispatch_targets - A list of {module, function, arguments} tuples. Any argument
that is a list starting with :attrs is transformed into get_in(attrs(), rest).
Defaults to [{Gettext, :put_locale, [[:attrs, :runtime, :language]]}] for zero-config
integration with a default Phoenix app.

 Example Configuration

defmodule MyApp.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.Attrs,
 Routex.Extension.RuntimeDispatcher
],
 dispatch_targets: [
 # Dispatch Gettext locale from detected :language attribute
 {Gettext, :put_locale, [[:attrs, :runtime, :language]]},

 # Dispatch CLDR locale from detected :locale attribute
 {Cldr, :put_locale, [MyApp.Cldr, [:attrs, :runtime, :locale]]}
]
end

 Error Handling

The extension validates all dispatch configurations during compilation to
ensure the specified modules and functions exist:
	Checks if the module is loaded
	Verifies the function exists with the correct arity
	Raises a compile-time error if validation fails

Example error:
** (RuntimeError) Gettext does not provide put_locale/1.
 Please check the value of :dispatch_targets in the Routex backend module

 Routex.Attrs

Requires
	none

Sets
	none

 Helpers

dispatch_targets(attrs :: T.attrs) :: :ok

 Summary

 Functions

 call(conn, opts)

 A plug fetching the attributes from the connection and calling helper function dispatch_targets/1

 handle_params(params, session, socket)

 A Phoenix Lifecycle Hook fetching the attributes from the socket and calling helper function dispatch_targets/1

 Functions

 call(conn, opts)

A plug fetching the attributes from the connection and calling helper function dispatch_targets/1

 handle_params(params, session, socket)

A Phoenix Lifecycle Hook fetching the attributes from the socket and calling helper function dispatch_targets/1

 Routex.Extension.Translations - Routex v1.2.2

Routex.Extension.Translations

Enables users to enter URLs using localized terms which can enhance user engagement
and content relevance.
Extracts segments of a routes' path to a translations domain file (default: routes.po)
for translation. At compile-time it combines the translated segments to transform routes.
This extension expects either a :language attribute or a :locale attribute. When only
:locale is provided it will try to extract the language from the locale tag. This algorithm
covers Alpha-2 and Alpha-3 codes (see:
ISO)
This extension requires Gettext >= 0.26.
In combination with...
How to combine this extension for localization is written in de Localization Guide

 Configuration

defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Translations
]
+ translations_backend: MyApp.Gettext,
+ translations_domain: "routes",

 Pseudo result

when translated to Spanish in the .po file
- products: producto
- edit: editar

/products/:id/edit ⇒ /producto/:id/editar

 Routex.Attrs

Requires
	language || locale

Sets
	none

 Use case(s)

This extension can be combined with Routex.Extension.Alternatives to create
multilingual routes.
Use Alternatives to create new branches and provide a :language or :locale per branch and
Translations to translate the alternative routes.
 ⇒ /products/:id/edit language: "en"
/products/:id/edit ⇒ /nederland/producten/:id/bewerken language: "nl"
 ⇒ /espana/producto/:id/editar language: "es"

 Routex.Extension.VerifiedRoutes - Routex v1.2.2

Routex.Extension.VerifiedRoutes

Supports the use of original route paths in controllers and templates while rendering
transformed route paths at runtime without performance impact.
Implementation summary
Each sigil and function eventualy delegates to the official
Phoenix.VerifiedRoutes. If a non-branching route is provided it will
simply delegate to the official Phoenix function. If a branching route is
provided, it will use a branching mechanism before delegating.
Alternative Verified Route sigil
Provides a sigil (default: ~l) to verify transformed and/or branching routes.
The sigil to use can be set to ~p to override the default of Phoenix as
it is a drop-in replacement. If you choose to override the default Phoenix sigil,
it is renamed (default: ~o) and can be used when unaltered behavior is required.
Variants of url/{2,3,4} and path/{2,3}
Provides branching variants of (and delegates to) macro's provided by
Phoenix.VerifiedRoutes. Both new macro's detect whether branching should be
applied.

 Options

	verified_sigil_routex: Sigil to use for Routex verified routes (default "~l")
	verified_sigil_phoenix: Replacement for the native (original) sigil when verified_sigil_routex
is set to "~p". (default: "~o")
	verified_url_routex: Function name to use for Routex verified routes powered url. (default: :rtx_url)
	verified_url_phoenix: Replacement for the native url function when verified_url_routex
is set to :url. (default: :phx_url)
	verified_path_routex: Function name to use for Routex verified routes powered path (default :rtx_path)
	verified_path_phoenix: Replacement for the native path function when verified_path_routex
is set to :path. (default: :phx_path)

When verified_sigil_routex is set to "~p" an additional change must be made.
file /lib/example_web.ex
defp routex_helpers do
+ import Phoenix.VerifiedRoutes,
+ except: [sigil_p: 2, url: 1, url: 2, url: 3, path: 2, path: 3]

 import unquote(__MODULE__).Router.RoutexHelpers, only: :macros
 alias unquote(__MODULE__).Router.RoutexHelpers, as: Routes
end

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
 Routex.Extension.Alternatives,
 [...]
+ Routex.Extension.VerifiedRoutes
],
+ verified_sigil_routex: "~p",
+ verified_sigil_phoenix: "~o",
+ verified_url_routex: :url,
+ verified_url_phoenix: :url_native,
+ verified_path_routex: :path,
+ verified_path_phoenix: :path_native,

 Pseudo result

given Routex behavior is assigned ~l
given the default behavior is assigned ~o
given the official macro of Phoenix is assigned ~p

given another extension has transformed the route
~o"/products/#{product}" ⇒ ~p"/products/#{products}"
~l"/products/#{product}" ⇒ ~p"/transformed/products/#{product}"

given another extension has generated branches / alternative routes
~o"/products/#{product}" ⇒ ~p"/products/#{products}"
~l"/products/#{product}" ⇒
 case current_branch do
 nil ⇒ ~p"/products/#{product}"
 "en" ⇒ ~p"/products/en/#{product}"
 "eu_nl" ⇒ ~p"/europe/nl/products/#{product}"
 "eu_be" ⇒ ~p"/europe/be/products/#{product}"
 end

 Routex.Attrs

Requires
	none

Sets
	none

 Routex.Extension.Interpolation.NonUniqError - Routex v1.2.2

Routex.Extension.Interpolation.NonUniqError exception

Raised when a list of routes contains routes with the same path and verb.
[%Route{
 path: "/foo"
 verb: :get},
%Route{
 path: "/foo"
 verb: :post}, # <-- different
%Route{
 path: "/foo"
 verb: :get} # <-- duplicate
]
Solution: use a combination of interpolated attributes that form a unique set.

 Routex.Extension.Localize.Parser - Routex v1.2.2

Routex.Extension.Localize.Parser

Handles parsing of locale strings.
Uses efficient binary pattern matching and follows RFC 5646 BCP 47 language tag format.

 Summary

 Functions

 extract_locale_parts(value)

 extract_part(value, atom)

 parse_locale(locale)

 Parses a single locale string into a locale entry.

 Functions

 extract_locale_parts(value)

 @spec extract_locale_parts(String.t()) :: {String.t() | nil, String.t() | nil}

 extract_part(value, atom)

 @spec extract_part(String.t(), :language | :region) :: String.t() | nil

 parse_locale(locale)

 @spec parse_locale(String.t()) :: Routex.Extension.Localize.Types.locale_entry() | nil

Parses a single locale string into a locale entry.

 Examples

iex> parse_locale("en-US")
%{language: "en", region: "US", territory: "US", locale: "en-US", quality: 1.0}

iex> parse_locale("fra")
%{language: "fra", region: nil, territory: nil, locale: "fra", quality: 1.0}

iex> parse_locale("")
nil

 Routex.Extension.Localize.Phoenix.Detect - Routex v1.2.2

Routex.Extension.Localize.Phoenix.Detect

Main module for locale detection logic.

 Summary

 Functions

 detect_locales(conn_or_map, options, attrs)

 Functions

 detect_locales(conn_or_map, options, attrs)

 @spec detect_locales(Plug.Conn.t() | map(), keyword(), Routex.Types.attrs()) ::
 Routex.Extension.Localize.Types.locale_result()

 Routex.Extension.Localize.Phoenix.Extractor - Routex v1.2.2

Routex.Extension.Localize.Phoenix.Extractor

Extracts locale information from various sources. Handles both Plug.Conn
structs and map inputs.
Supports languages and regions defined in the IANA Language Subtag
Registry

 Sources

List of sources to examine for this field.
	:accept_language examines the accept-language header.
	:body uses body_params; useful when using values in API bodies.
	:cookie uses the request cookie(s)
	:host examines the hostname e.g en.example.com and example.nl. Returns the first match..
	:path uses path_params such as /:locale/products/
	:query uses query_params such as /products?locale=en-US
	:route uses the (precompiled) route attributes.
	:session uses the session
	:assigns uses the assigns stored in connection of socket

 Params

List of keys in a source to examine. Defaults to the name of the field with
fallback to locale.

 Summary

 Functions

 do_extract_from_source(conn, arg2, param, attrs)

 extract_from_source(conn_like, source, param, attrs)

 Functions

 do_extract_from_source(conn, arg2, param, attrs)

 extract_from_source(conn_like, source, param, attrs)

 @spec extract_from_source(Plug.Conn.t() | map(), atom(), String.t(), keyword()) ::
 String.t() | nil

 Routex.Extension.Localize.Phoenix.Parser - Routex v1.2.2

Routex.Extension.Localize.Phoenix.Parser

Handles parsing of accept-language headers.
Uses efficient binary pattern matching and follows RFC 5646 BCP 47 language tag format.

 Summary

 Functions

 parse_accept_language(header)

 Parses an accept-language header into a list of locale entries.

 Functions

 parse_accept_language(header)

 @spec parse_accept_language(String.t() | list()) :: [
 Routex.Extension.Localize.Types.locale_entry()
]

Parses an accept-language header into a list of locale entries.

 Examples

iex> parse_accept_language("en-US,fr-FR;q=0.8")
[
 %{language: "en", region: "US", territory: "US", locale: "en-US", quality: 1.0},
 %{language: "fr", region: "FR", territory: "FR", locale: "fr-FR", quality: 0.8}
]

 Routex.Extension.Localize.Registry - Routex v1.2.2

Routex.Extension.Localize.Registry

Pre-generated locale registry shipped with Routex.
Generated from IANA Language Subtag Registry.
It provides validation and display name lookups.
Examples:
iex> alias Routex.Extension.Localize.Registry
iex> Registry.language("nl-BE")
%{descriptions: ["Dutch", "Flemish"], type: :language}

iex> Registry.region("nl-BE")
%{descriptions: ["Belgium"], type: :region}

iex> Registry.language?("zz")
false

iex> Registry.region?("BE")
true

 Summary

 Functions

 cctld?(value)

 language()

 language(key, default \\ nil)

 language?(key)

 region()

 region(key, default \\ nil)

 region?(key)

 Functions

 cctld?(value)

 language()

 language(key, default \\ nil)

 language?(key)

 region()

 region(key, default \\ nil)

 region?(key)

 Routex.Extension.Localize.Types - Routex v1.2.2

Routex.Extension.Localize.Types

Type definitions for locale detection.

 Summary

 Types

 locale_entry()

 locale_key()

 locale_result()

 source()

 Types

 locale_entry()

 @type locale_entry() :: %{
 language: String.t(),
 region: String.t(),
 territory: String.t(),
 locale: String.t()
}

 locale_key()

 @type locale_key() :: :region | :language | :territory | :locale

 locale_result()

 @type locale_result() :: %{required(locale_key()) => String.t() | nil}

 source()

 @type source() ::
 :accept_language
 | :body
 | :cookie
 | :host
 | :path
 | :query
 | :attrs
 | :session

 Routex.Extension.Alternatives.Branch.Flat - Routex v1.2.2

Routex.Extension.Alternatives.Branch.Flat

Struct for flattened branch

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Routex.Extension.Alternatives.Branch.Flat{
 attrs: %{required(atom()) => any()} | nil,
 branch_alias: atom(),
 branch_path: [binary()],
 branch_prefix: binary()
}

 Routex.Extension.Alternatives.Branch.Nested - Routex v1.2.2

Routex.Extension.Alternatives.Branch.Nested

Struct for branch with optionally nested branches

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Routex.Extension.Alternatives.Branch.Nested{
 attrs: %{required(atom()) => any()} | nil,
 branch_alias: atom(),
 branch_path: [binary()],
 branch_prefix: binary(),
 branches: %{required(binary() | atom()) => t()} | nil
}

 Routex.Extension.Alternatives.Config - Routex v1.2.2

Routex.Extension.Alternatives.Config

Module to create and validate a Config struct

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Routex.Extension.Alternatives.Config{
 branches: %{
 required(binary() | nil) => Routex.Extension.Alternatives.Branch.Flat.t()
 }
}

 Routex.Extension.Alternatives.Exceptions.AttrsMismatchError - Routex v1.2.2

Routex.Extension.Alternatives.Exceptions.AttrsMismatchError exception

Raised when the custom attributes of branches do not have the same keys.
%{
 branches: %{
 "/" => %{attrs: %{key1: 1, key2: 2}},
 "/other" => %{attrs: %{key1: 1}} # missing :key2
 }
}
To fix this, make the attribute maps consistent or use an attributes struct.

 Routex.Extension.Alternatives.Exceptions.MissingRootSlugError - Routex v1.2.2

Routex.Extension.Alternatives.Exceptions.MissingRootSlugError exception

Raised when the branch map does not start with the root branch "/".
%{
 branches: %{
 "/first" => %{attrs: %{key1: 1}},
 "/other" => %{attrs: %{key1: 1}}},
}
To fix this, include a branch for the root "/".
`%{
 branches: %{
 "/" => %{
 attrs: %{level: 1}
 branches: %{
 "/first" => %{attrs: %{level: 2}},
 "/other" => %{attrs: %{level: 2}}
 }
 },
 }
}

OEBPS/dist/epub-4WIP524F.js
